Modeling elastic wave forward propagation and reflection
using the complex screen method

Xiao-Bi Xie and Ru-Shan Wu
Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, California 95064

(Received 18 January 2000; revised 24 February 2001; accepted 27 February 2001

Formulation for calculating forward propagation and reflection in a 3D elastic structure based on the
complex-screen method is given in this paper. The calculation of reflections is formulated based on
the local Born approximation. When using a small angle approximation, the backscattering operator
reduces to a screen operator which is similar to the forward screen propagator. Combining the
forward propagator and backscattering operator together, the new method can properly handle the
multiple forward scattering and single backscattering in a 3D heterogeneous model. Using a
dual-domain technique, the new method is highly efficient in CPU time and memory savings. For
models where reverberation and resonance scattering can be neglected, this method provides a fast
and accurate algorithm. Synthetic seismograms for two-dimensional elastic models are calculated
with this method and compared with those generated by the finite-difference method. The results
show that the method works well for small to medium scattering angles and medium velocity
contrasts. ©2001 Acoustical Society of AmericdDOI: 10.1121/1.1367248

PACS numbers: 43.20.Gp, 43.20BiNN]

I. INTRODUCTION similar results. The screen method has also been used as

Fast modeling methods and algorithms in complex het-t?aCk propagators for seismic wave migration in either acous-

erogeneous media, especially for 3D media, are crucial to thii¢ ©F élastic medide.g., Stoffaet al, 1990; Wu and Xie,
application of seismic methods in complex structures includ1994; Huanget al, 1999. Generally speaking, these meth-
ing the development of interpretation, imaging and inversiorPdS 9ive better imaging quality compared with the ray based
methods. Finite-difference and finite-element algorithms ardirchhoff method. The generalized screen methods are based
very flexible. In principle, they can be applied to arbitrarily " the one-way wave equation that neglects backscattered
heterogeneous medium. However, they are very time conaves, but correctly handles all the forward multiple-
suming. High-frequency asymptotic methods, such as ra§catter|ng effects, e.g.,_focusmg/defo_cusmg, diffraction, in-
based methodge.g., Grverly 1981; Grveriyand Klimes, terfe_rence, and conversion between d|fferent wave types..For
1984; Chapman, 1985provide high computation efficiency media where the resonance scattering or reverberations
for smooth 3D models. However, they fail to deal with com- caused by heterogeneities can be neglected, the reflections
plicated 3D volume heterogeneities. Frequency-dependemi“ be dominated by single backscatterings. In this case, the
and wave related phenomena in complex media cannot bEreen method can also be adopted to calculate reflections.
correctly modeled by the ray methods. Born scattering forWu and Huang1999 tested the method for acoustic reflec-
mulation (Gubernatiset al, 1977; Wu and Aki, 1985 ray- tions. Wu (1996 discussed approximations for forward and
Born (Beydoun and Mendes, 1989; Coates and Chapmarackward scatterings of different wave types. Xie and Wu
1990, or generalized Born scattering methd@ates and (1996 tested the screen approximation for modeling elastic
Chapman, 1991can model small volume complex heteroge- wave reflections.
neities in a smooth background. However, they are not ca- In this study, the complex-screen method is extended to
pable of modeling long distance propagation in complex medeal with both forward propagation and reflection of elastic
dia. It is necessary to develop intermediate modelingvaves. The current formulation is based on a small angle
methods functioning between the full wave equation methapproximation of the one-way wave equation and the local
ods and the high-frequency asymptotic methods. Born approximation using the perturbation theory. Under the
The phase screen method, or split step Fourier methogmall angle approximation, backscattering can also be for-
(e.g., Flatteand Tappert, 1975; Tappert, 1977; Thomson andnulated into a screen operator which is similar to the screen
Chapman, 1983 has been used to calculate the one-waypropagator. The interaction between the incident wave field
forward propagation for acoustic waves. Recently, theand the heterogeneities gives both forward and backward
method has also been used to deal with elastic waves. Tgcattered waves. The forward scattered waves, together with
generalize a scalar wave case to vector elastic waves, tlibe primary wave, construct the transmitted waves. The
center part is the coupling betwePnandSwaves. Fisk and backscattered waves give the reflections by the structure.
McCartor (1991 derived coupling terms using a projection With an iterative method, it can correctly handle multiple
method. Their method has some problems for some limitingorward scattering and single backscattering. By using a
cases. WU1994) derived these terms based on formal scat-dual-domain operation, it retains the advantages of the origi-
tering theory of elastic waves. Wild and Hudsd®98 used nal screen method, i.e., high-efficiency in computation speed
another approach, the geometrical derivation, and reachezhd tremendous memory savings. Numerical results show
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that this is a very promising method in modeling primary — AZ ——
reflections from complicated large scale 3D elastic struc-

tures. P P
In the following sections, we first present the formula- Uo o
tion. Then numerical examples are conducted to test the PP -
method. For a two-dimensional test model, the results from Up —=— —=— Ut
the screen method are compared with that from the full wave | g — —— [}
finite-difference method.
ug ug
Il. EXPRESSIONS FOR FORWARD AND BACKWARD
SCATTERED WAVE FIELDS Uﬁp —— —— U?P
We start from the equation of motion for displacement b ——— —— U
in a linear elastic mediunfAki and Richards, 1980

= p(X)@?u(x)=V-[36(x):(Vu(x)+u(x)V)], D Z Z
whereu is the displacement; is the elastic constant tensor,
p is density,uV is the transpose dFu and “: is for double FIG. 1. A sketch showing the primary waves and various scattering waves
scalar product. i.e a(b)(cd) B (b c)(a d) If elastic ) generated when an incident wave interacts with an inhomogeneous thin slab.
p 1 S : A e pa For details see text.
rameters and the wave field can be decomposed into

p(X)=po+ p(X), 1 |
o(X)=Co+ 8c(), Uo(XT'Z)me dK+{ug(Kr,2) + ug(Kr,2)Je! T,

u(x) =ug(x) + U(x), (6)

where p, and ¢, are density and elastic parameters for thewhere K+ is the incident transverse wave number of plane

background mediumdp(x) and 5c(x) are the corresponding waves and superscripESaqudenoteP— and Swaves. The
perturbationspg(x) andU(x) are the incident field and the forward propagated field is composed. of primary wave and
scattered field, then Eql) can be rewritten as forward scattere®®- andSwaves. Atz,, it can be expressed

as
—pow?U(X) =V -[1c0:(VUX) +U(X)V)]=F(x), (2) .
where 5,20 = =z | AKATUT(K 22) UK 22T
F(X)=w?8c(x)u(x)+V-[36c(X):(Vu(x)+u(x)V)] 7)
(3  where

is the equivalent body force due to scattering. The scattered

field can be expressed as Uf (K ,20) =75l ug (K, 20) +UF (K1, 20)

+UPA(KT,20)], ®)
U(x)=J'V,dv’G(x;x’)F(x’), (4)
SK! — aivalzi— 2ol 1Sk ! S

whereG is the Green'’s function in the background medium. UKy z,) =€ [U(K,20) + Up K+ 20
We will consider a special case where an incident wave +UfS(K’T,zo)], 9
Up(X) interacts with a heterogeneous thin slab which is per- L
pendicular to the main propagation direction. Figure 1 showé"’here}éT IS Zthl?ztransverse wave I}l/émber of scattered waves,
the primary incident waves and various types of secondary«= (K~ K7)7“andyz=(kj;—K7)"“are longitudinal com-
waves generated by the scattering process. If the slab is thipPnents oP- andSwave numbers in the background media,
enough, the local Born approximation can be adopted withi?ndKo= /@ andks=w/ are P- and Swave numberse
the slab. The wave field(x) in Eq. (3) can be replaced by am/j,B areP- and%wave velocities. Phase advance operators
the incident fielduy(X). Let &, be the unit vector along the €'?«%17%l and e'7s%~%l propagate the incident and scat-
main propagation direction, and=x&+y&, be a position tered fields frome, to z,. The reflected wave is composed of
vector in the transverse plane. The slab is betvegeamndz, , backscattere®- andS-waves. Atz,, the reflected wave can
with a thickness of\z=z,—z,. The scattered field from the be expressed as
slab can be expressed as 1

7 Up(XT,20) = Fj dK%[UE(K+1ZO)+U§(K+7ZO)]eiK%'XT,

U(x)=j dz’f f dx;G(Xr,Z;x1,2" )Fo(X1,2"), (5 77
20

(10
whereFy(x) is Eqg. (3) with u(x) replaced byug(x). where
The incident fielduy(x) can be decomposed into a su- o, N s,
perposition of pland>- and Swaves: Uy (Kt,20) =Up " (Kt,20) + Uy (K7, 29), (11)
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In principle, Egs.(7)—(18) provide all equations needed for
calculating wave fieldsi;(x7,2;) anduy(X7,2zy). However,

In above equations) denotes scattered waves. The sub-from these equations we can see that scattered waves com-
scriptsf andb denote forward and backward scatterings, '&posed of contributions from ak which are coupled with

spectively. Superscrip®P, PS, SRandSSindicate the scat- g1 jncident K;. For a general three-dimensional velocity
tering between different wave types as shown in Fig. 1. Fofnodel, both of them are two-dimensional and B/ ,K )

isotropic elastic medium, the scattered fields for both for—iS a four-dimensional matrix. The calculations of these ma-
ward and backward scatterings can be derived from(&0. iy operations are very time consuming. To obtain a highly

Us(K4,z0)=UP (K7 ,20) + US UK}, 20). (12)

(Wu, 1994: efficient algorithm, we introduce a small angle approxima-
i 5P(E) tion to the formulation.
UPP(K K =—,k2uPR’[ k,-k!
( T T) 2'ya a0 N ( a) po
~ _ Ill. SMALL ANGLE APPROXIMATION
oNK) o 26u(k) i
“xgoa Kek) o, (13 Under the small angle approximatiop, andy,, can be
o™ <io o ko approximated by, , andy; and y; by k. The exchange
i A 5P(E) wave numbers for forward and backward scattered fields can
UPS(KS Ky = ﬁkzug[ka—kg(ka- kp)] e be simplified. For forward scattering
B
_ kl,—k,~Ki—K:+08&,
Bo,~ o, ou(k) , , R
—2a—0(ka~kﬁ) o |’ (14 Kp—k,~Ki—=Kr+(kg—k,)8&,, "
USP(KI K ):I_kZ(uSk!)&r 5p(k)
TR gy Rt T0 Rl Ra| kp—Kg~Ki—Kr+08,.
_Zﬁ(k © Su(K) s For backward scattering
Qg B Na Mo , k;_ka%K'}_ KT_2kaeD
i . . sp(k) kp—Ko~=Kr—Kr—(kgt+ko)&,,
USSK! K :—,kz{ us—ka(us k)] ——=
KT KD= g K| s Kbkl = K~ kg=Ki—Kr— (ko kp)8,, @0

where ub=|uf(K1)| and u3=u3(K+), ép(k), Sn(k) and

—[ (kg k) [ug—kp(ug k) 1+ (u3-k.,)

Su(k)
Mo

X(kg—kp(kg k)] : (16)

The three-dimensional Fourier transforms of the pertur-
bations 5p(k), 6n(k) and su(k) can also be simplified.
Taking the density perturbation for back scattering as an ex-

ample,

Su(k) are three-dimensional Fourier transforms of medium

Az
perturbations, wave numbers without primes are for incident 5p(k;—ka)=f dzé%**/aﬂf j dxy
waves and with primes are for scattered wakesk’ —k is 0
the exchange wave number wkhandk’ as the incident and
scattering wave numbers, respectivety, and RB are unit
wave number vectors fdP- and Swaves, and
ka:KT+yaé21 kB: KT+ YBéZl
Ko=Kitv.8, Kp=Kityge,
where the+ or — sign depends on whether it is forward or
backward scattering, an@, is the unit vector in the .
z-direction. The longitudinal coordinatg has been tempo- 12k,Az
rarily omitted from these equations. and sincg)=sin(@)/z. In the above equations, the original
Equations(13)—(16) give scattered fields of different three-dimensional Fourier transform has been decomposed
wave types. They are scattered plane waves with transversgto a 2D Fourier transform and a 1D Fourier transform.
wave numbeK 1 generated by the plane incident wave with §p(K+,z,) is a 2D Fourier transform ofp(xt,z) averaged
transverse wave numbéry . The total scattered plane wave over an interval betweer, andz,, 7" is the 1D Fourier
is the integration of contributions from all incident plane transform of a boxcar function since the medium variation in
waves, z direction has been neglected due to the screen assumption.
For simplicity, z; is omitted in the following equations.
Similarly, for forward scatterings of different wave types we
have

X 8p(Xy,z—2zg)e” (KT Kp-xr, (21

If the slab is thin enough, the variation 6p(x+,z) along the
z-direction will be small, the integral can be approximated as

Sp(k!—k,)~Az8p(K+—Ky,z0) 7h ", (22)

where

17

1 - '
ngp: (e'%kabZ— 1) =sing k,Az)eke??, (23

1
UK} 200~ - [ dKGUK K 20 18)
n
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Sp(ky—
dp(Kp—K,)
Sp(k,—kg)=
dp(Kp—kp)~Az8p(K1—Kr) 7®,

Ko)~Az8p(Ki—Kp)7f",
~Az3p(K}—K) 7fS,

, 24
Azsp(Ki—Kp) 77", 24

and for backward scatterings of different wave types
p(k,—K,)~Az8p(Ki—Ky) 75"
Sp(Kjy—Ka)~
dp(K,—kg)~

op(k ;;— Kg)~
The modulation factors are

Azop(K1—Ke) 75>,

/ (25)
Azop(Ki—K) 5"

Azop(K1—Ke)75°.

7 =1,
nr =Sin({(kﬁ—ka)AZ/2]e_i(kB_

(26)
7lf = 77? PS:

Ko)AZI2

77 o=1,

7t P=sindk,Az)ek"?,

nb S= sind (kg+ k,)Az/2]ei kst k222

27
ﬂgp— 77b )

75 =sina kyAz)e'kst?,

wheren* is the complex conjugate of. Similar expressions

can be derived for the elastic constahtand u.
Note that under small angle approximatiork, (k.),

(kg-kp), (kg ky) and (,-kj

have

. Sa(K
ik, AZK uP(K+) a; PP (2g)
0

a_R;;(Ra' R;}’)]

UPP(KS Kp)=—

UPS(KT Ky =—ikgAzu(Ko)[k

[(m(KT) (@_1) Su(Rr)| s
Bo ag 2 Mo G
(29)
UPP(K T, Ky) = —ikAz(ug(Ky) -k))k,,
{fw(KT) (___) ouRy)| o
(30)
UPK T K)= —ik gAZ[ ug(K) —Kp(ug(K)-kp)]
OB(K
Mnf’s, (31)
Bo

and for backward scatterings, we have
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) approach+1 for forward and
—1 for backward scatterings, respectively. Substituting Egs.
(24)—(27) into Egs. (13)—(16), for forward scatterings we

URP(KS Kp)=—ik,AZK ub(K+)
Sp(K Sa(K

x P( T)+ o T)

Po (&%)

5Za(RT) PP
ZaO Mo
bS(KT Ky =—ikpAzuf K[k, —kj(k, kp)]
| 5B(K+) (Bo+ )&L(K)
,30 2 Mo

=ik pAzW (K)[k,—

PP
b

=—ik,AzK ub(K+) (32

PS

X o

Qg
Kp(k, kp)1

5ZB(KT) (,30 1) 5M(KT)

X —_—
Mo

s, (33

Z,BO [£79) 2

Us (KT, Kp) = —ik,Az(ug(Ky) -k} )k,

'5ﬁ(RT>_(@+3) su(Ro)] op
2

Mo

Bo Mo
=ik, Az(ug(Ky)-k})k,,

(Bo 1) Su(Ky)
M0

@

5Z4(Ky)
ZBO
Up KT Kp) =ik pAZ[ug(Kr) —Kp(ug(K) - kp)]

y sp(K ) SB(Kr)
Po Bo

=ik Azl ug(Ky)—kj(u

SP’ (34)

[£75) 2

SS
o

S(KD) - kp)]
| Z5(Ks)

SS
. 35
ZIBO Mo (

In Egs. (28)—(35), RT:K}—KT is the exchange transverse
wave numberda (K1) anddB(Kt) are transverse spectra of
P- and Swave velocity perturbations,6Z,(K;) and
0Z(Ky) are transverse spectraef andSwave impedance
perturbations, respectively. Equatiof®8) and (32) show
that the forward scattereB-P wave is proportional to the
P-wave velocity perturbation, while the backward scattered
P-P wave depends on the-wave impedance perturbation,
consistent with the scattering theory. A similar situation is
true for S-Sscattering as can be seen from E@4) and(35).
The quantity B¢/ag—1/2) is usually small, and as can be
seen from Eqgs(29) and (30), the forward converted waves
UPS andU?F are basically controlled by th®wave velocity
perturbation. Similarly, from Eq933) and (34), the back-
ward converted wavesJ.S and US” are controlled by
Swave impedance perturbation. The forward and backward
scattered waves reveal different characteristics of the me-
dium, since they are controlled by different medium param-
eters.

The total scattered plane wave is the integration of con-
tributions from scattering of all incident plane waves. For
example, forP-P forward scattering we have
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A. Single thin slab B. Original 3D model

1
rP(KT,Zo):rﬂ_zj dKTU?P(KTvKTaZO)- U, u Uy us
—f —‘ s e
o I1|1 [I+]
From Eq.(28) we can see that the above equation is a con- -] e
volution between the incident wave and medium parametel U up

in the transverse wave number domain. A more efficient cal-

culation is to transfer the wave number domain convolution € Multi-slab model

into a spatial domain multiplication using the fast Fourier  ue(z; 1) U (2;) Uy (210
transform. Thus g I N
U?P(K+,ZO):—|kaAZT(;77?PJ J dxfe*iK-’l—»X_;. [ /- /-
(Sa’ X’) u (z;. w,(z: u (Z )
XUE(X},ZO)%, (36) b( i I) b( l) (Ziv]

0

where da(x7) is da(Xt,z) averaged over the interval be-
tweenz, andz;. Similarly, dual-domain formulas for other

u.(zip) | I-1 u(z) | 1 U (Zir )| I+1
wave types can be obtained as (-

i e

UfS(K} Zo)=— ikBAanSREX K x J J dX}EfiK%X% FIG. 2. A sketch of the multiscreen method. For details see text.
X UP (X! Zo) (,30__ Sp(xt)
oM 50 2] po UsF(K},zo) =ik Aznbpk’{k' ffdx e KT X7
ﬂ 5ﬂ(X ) ’
+2 ( 0 T (37 Bo 1) op(x7)
ag/  Bo Xug(xr,zo)| | —+ = 5
0

} , (42)

UPR(KS ,z0) = —ik Azns"”'[k' ffdx'e"KT X s (,80) SB(x})

Bo

Qg

X ug(%7 ,20)

(ﬂo 1) 8p(x¢)

@y 2 Po A L
B4\ SB(X) Us XK zo) =ik gAzmp Ky § kjpx f f dxre KT
+2| £0) 220D | 8
) Bo o, OZg(x})
X Ug(Xt,20) . (43
UPIKS,z0) = —ikBAzn?Sk;jx[R;f f dx;
o SB(X3)
XeIKT'XTU(S)(X-’r,ZO)% ) (39 ] IIIISIOEIr(I:?IIII
° receiver
- o 1 km
UPP(K{,20) = — ik, AZK, 75" f f dxre KT
8Z ,(X1)
xuS(x},zo)Z—T, (40)
a0
Up XK ,20) =ik gAznf Kk ;X [ kj;x f f dxje KT
<u (X ) '80 5P(XT) FIG. 3. Two-dimensional model used to compare the results from the screen
01 7T:40 2 Po approximation method and finite-difference method. The model is a 2D
profile from the French modéFrench, 197% The parameters for the back-
Bo\ SB(X7) ground medium ar&/p=3.6 km/s, Vg=2.08 km/s andp=2.2 g/cni. The
+ 21 — —,8 , (41) intermediate layer has a20% perturbation for bot®- and S‘wave veloci-
@o 0 ties.
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Phase screen vs. FD, 20%, 5-30Hz

Z-component X-component

T

T
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L
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8T

FIG. 4. Comparison of synthetic seis-
mograms calculated by different meth-
T~ ods. The solid lines are from the
] screen method and the dashed lines are
from the finite-difference method. The
results show general agreement be-
tween the two methods in both ampli-
tude and arrival times.
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The spatial domain operation of medium-wave interactionsvith an iterative method. First, the 3D model is divided into
are multiplications which are very efficient. The scattereda series of thin slabFig. 2(B)]. Thelth slab is between,

field U(K+,2) from Egs.(36)—(43) is then substituted into andz_ ;. The last section provides us with the formulas for
Egs. (7)—(12) to calculate forward and reflected fields. The calculating the interaction between the incident wave and a
propagation of plane waves passing through the homogesingle thin slab[Fig. 2(A)]. With these equations we can
neous background medium is conducted in wave number dea|culate the transmitted field (z; ;) and the backscattered
main by Egs.(8) and (9). In wave number domain, the fie|d u,(z) from the incident waveu;(z). The transmitted
propagation operator involves only a phase advance, whicl|q is used as the input for the next slab and in this way the
is also an efficient operation. Note the difference betweeRynyard propagated field in the entire model can be obtained.
Egs. (13—(16) and Eqs.(28)~(35). The former involves g packscattered field are stored temporarily. After finish-
complicated calculations and the medium-wave |nteractlon§hgl the forward propagation, the backscattered fields are re-

?hre ?Ot local, while the Iatgr |n&/olve§ S'mhpli conVﬁIu:clons ![?]trieved and once again propagated using the one-way propa-
€ transverse wave number domain, which resufts from Sator. The reflected fields, (z) in the entire model are

lsar;?g: angle approximation and greatly simplifies the CalCu'calculated[Fig. 2C)]. In this way, all the multiple forward

In summary, the wave propagation through a thin slab iSscatterlngs and single backscatteriiy=SB) can be taken

decomposed into a series of highly efficient steps. The modémO SC"O“’.“- | simulati ducted to test th
parameters are separated into two parts, the background pa- urr;erlfc;_a_ simu a:clohrjs are hcodn uﬁ € % ?S € accu-
rameters and the perturbations. The interaction with the pef@cy and efficiency of this method. The model is a 2D cut

turbations in the spatial domain gives the scattered waved©m the French modelFrench, 1974 Figure 3 shows the

The propagation through the background medium is in the&velocity strugture of this model. The parameters of the back-
wave number domain. The calculations in both domains arground medium are/p=3.6 km/s, Vs=2.08 km/s, andp
local and very efficient. The forward and inverse fast Fourier= 2-2 g/cni. The intermediate layer has -a20% perturba-

transforms switch the wave field between the two domainstion for both P- and Swave velocities. The>-wave source
and receivers are located 1 km above the upper interface.

IV. ITERATIVE PROCEDURE AND NUMERICAL With this source—receiver configuration, the observed signals

EXAMPLES are basically reflections from the structure. The synthetic
Figure 2 is a sketch showing how to calculate the inter-seismograms are calculated using the elastic complex-screen

action between incident wave and a 3D heterogeneous modeiethod presented in this study and a finite-difference
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