The application of wide angle screen propagator to 2D and 3D depth migrations
Xiao-Bi Xie*, Institute of Tectonics, University of California, Santa Cruz
Chuck C. Mosher, ARCO Exploration and Production Technology, Plano, Texas
Ru-Shan Wu, Institute of Tectonics, University of California, Santa Cruz

Summary

The wide-angle screen propagator for acoustic wave has been used for fast and accurate depth migration. Compared with the conventional phase screen method, the wide-angle version can give more accurate phase and amplitude for models with large velocity contrast and wide propagation angles. In this study, the wide angle propagator is applied to 2D and 3D common shot prestack depth migrations of the SEG/EAGE Salt Model. The model shows a number of challenging features to migration algorithms, e.g., strong velocity contrast and steep structures. Numerical results show that the new propagator gives significant improvements for imaging sub-salt structures.

Introduction

The phase screen method is based on the one way wave equation theory. It can be used as a high efficiency propagator for seismic migration (Stoffa et al., 1990; Wu and Xie, 1994). The derivation of the conventional phase screen method usually requires that the velocity perturbation is small or the incident angle is small. However, real models used in imaging practices may contain very large velocity contrasts. Under these situations, the conventional phase screen method can give correct phase only within a small scattering angle, and can not generate satisfactory results. Several attempts have been made to improve the wide angle capability of the screen method. The PSP1 method (Gazdag and Sguazzero, 1984) uses multi-reference velocities and then generate the solutions in interpolations. The Fourier finite-difference method (Ristow and Ruhl, 1994), wide angle improvement method (Xie and Wu, 1998, 1999) and the modified pseudo screen method (Jin, Wu and Peng 1998) all use finite-difference method to improve the screen solution. Using the Hamilton path integrals, de Hoop et al. (1998) gave a general formulation for screen method. Based on their formulation, the accurate solution can be obtained by summing higher order terms of series. Huang et al. (1998) suggested an extended local Retyov method to improve the screen solution.

In this paper, we will briefly describe the equations of the wide angle screen propagator by Xie and Wu (1998, 1999). Then we will give 2D and 3D depth migration examples for synthetic data sets using the wide angle propagator algorithm.

Brief description of the method

The propagating wave field \(p(x_T, z) \) can be expressed as a superposition of plane waves

\[
p(x_T, z) = \int d\mathbf{k_T} \psi (z, \mathbf{k_T}) e^{i \mathbf{k_T} \cdot \mathbf{x}_T}
\]

(1)

where \(x_T = (x, y) \) and \(z \) are transverse and depth coordinates, \(\psi (z, \mathbf{k_T}) e^{i \mathbf{k_T} \cdot \mathbf{x}_T} \) is a plane wave component, \(\psi \) is the amplitude and \(k_T \) is the transverse wavenumber. The propagator for plane wave amplitude can be obtained by solving the equation on \(\psi \) (Xie and Wu, 1998, 1999)

\[
\frac{\partial \psi (z, \mathbf{k_T})}{\partial z} = i \left[k_{0z} - k_0 \left(\frac{\partial c}{\partial s} \right) \right] \\
- k_0 a \left[\left(\frac{1}{c_0} \right) - 1 \right] \frac{\partial^2}{\partial s^2} \\
1 - b \left[1 + \left(\frac{1}{c_0} \right) \right] \frac{\partial^2}{\partial s^2} \psi (z, \mathbf{k_T})
\]

(2)

where \(k_0 = \omega / c_0 \) is the background wavenumber, \(k_{0z} \) is the vertical component of \(k_0 \), \(a = 0.5 \) and \(b = 0.25 \) are Padé expansion coefficients, \(n \) is Fourier transform of the refraction index \(c_0 / c \). \(c = c(x_T, z) \) is the velocity, \(c_0 \) is the background velocity, and \(s \) denotes the convolution in wave number domain.

On the right hand side of the equation, there are three terms. The first term gives the phase shift solution, first two terms combined give the conventional phase screensolution. The last term modifies the phase screen solution for wide angle incidence and large perturbations.

Figure 1 compared the dispersion curves of different approaches. Shown in this figure are vertical wavenumber \(k_z \) versus transverse wavenumber \(k_T \) for a plane wave penetrating a slab with constant velocity. To show the accuracy with large velocity perturbation, we chose reference velocity as half of the true velocity. The velocity contrast \(c / c_0 = 2.0 \) (i.e., 100% velocity perturbations). The inner circle is the accurate dispersion curve. The outer circle is the dispersion curve in the background velocity, i.e. the phase shift solution. The dispersion curve from the phase screen method...
Wide angle screen method

\[\frac{c}{c_0} = 2.00 \]

Figure 1: Comparison between dispersions from different propagators. The velocity \(c = 2c_0 \) (velocity perturbation is 100\%). The vertical and horizontal coordinates are vertical and horizontal wavenumbers. Different curves indicate different approximations.

gives correct phase in the vertical direction but has large errors at wide angles. The wide angle version (marked with Pade’approximation) using equation (2) gives much better results. As can be seen in the figure, if we optimize the parameters \(a \) and \(b \), the result can be further improved.

Equation (2) can be solved using different approaches. A convolution in wavenumber domain can be replaced with a high efficiency multiplication in the space domain. A fast dual domain algorithm can be formed by calculating the first term in the wavenumber domain and the second and third terms in space domain (Xie and Wu, 1998). The process can be summarized into

\[p(x_T, z_{i+1}) = P[p(x_T, z_i)] \quad (3) \]

With an iterative algorithm, the entire wave field in the \((x_T, z)\) domain can be obtained. Both poststack and prestack migration involve back propagation of the received reflection seismograms downward. With time reverse, or equivalently, the conjugate of spectra of seismograms, the same forward propagator can be used to calculate back propagations. For common shot prestack migration, the imaging condition is

\[M(x_T, z) = \sum_{x_T} M_{shot}(x_T, z) \quad (5) \]

where \(p_s(x_T, z, \omega) \) and \(p^*(x_T, z, \omega) \) are downward propagated wave from the source and downward propagated time reversed field from the receivers. \(M_{shot}(x_T, z) \) is the image from a singly shot, and \(M(x_T, z) \) is the stacked image from all shots.

Figure 2: Comparison of 2D migration images using different methods. From top to bottom are reflection model, image using phase screen method, and image using wide angle screen method, respectively.

Test migration of 2D data set

Figure 2 shows the result of prestack depth migration of the 2D SEG/EAGE Salt Model. The synthetic data
Wide angle screen method

Depth migration of 3D data set

Figure 3 shows the result of applying shot record migration with the wide angle screen correction for the 3D SEG/EAGE Salt Model. The data were generated by Sandia National Laboratory as part of the Advanced Computational Technology Initiative (Ober et al., 1997). The dataset consists of a 5 x 9 shot array (45 shots) into a 201 x 201 receiver grid with 20m receiver spacing. Shots are spaced 1000 m in X and Y, and were selected to cover approximately the same region as the SEG/EAGE Salt Model C3 subset (Aminzadeh et al., 1997). The input data are sampled at 8 ms with record length 4 sec, and usable frequency bandwidth in the range 1 to 30 Hz.

In the top panel of Figure 2 shows In-Line 242 (X=4820m) from the full velocity model, with Y coordinate ranging from 0 to 13500m. The middle panel shows the result of migrating and stacking the first 9 shots from the Sandia subset using a phase screen propagator, also centered on In-Line 242. The Y coordinate ranges from 620 to 10620m. The bottom panel shows the same In-Line with the migration using wide angle propagator. Even with only nine shots, significant improvements in sub-salt structure can be seen compared to the first order phase screen. In particular, sediment reflectors that terminate under the salt can be identified. Subsalt imaging for this model continues to be a challenge, but we expect to make significant improvements as we fine-tune the numerical implementation of the wide angle screen propagators.

Conclusions

The preliminary results from 2D and 3D shot gather depth migrations using the wide angle version of the screen method show some encouraging features. The future work will be focused on reducing the noise level and improving the image of sub-salt structure.

Acknowledgements

The supports from the Basic Energy Science Branch of the Department of Energy and from the WTOPI Research Consortium at UCSC are acknowledged. The full support of the W.M. Keck Foundation is also acknowledged.

References

Aminzadeh, F., Brac, J., and Kunz, T., 1997, 3-D Salt and Overthrust Models, SEG/EAGE 3-D Modeling Series, No. 1

Figure 3: Comparison of 3D migration images using different methods. From top to bottom are velocity model, migration image using phase screen method, and image using wide angle screen method, respectively.