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SUMMARY
We define and formulate the resolution of an imaging system based on the inverse theory and
local angle domain decomposition of Green’s functions. The resolution defined in this way
includes both the effects of acquisition system and imaging (migration) process. The theory
and method are based on wave theory and no asymptotic approximation is made in the
calculation. It represents and quantifies the actual resolution we observed in the migrated
images. The resolution taking into account only the influence of the acquisition system
(frequency band and spatial aperture) and neglecting the factors such as the errors in
backpropagation (migration) can be considered as the resolution limit of the system, the best
resolution an acquisition system can get. Theoretical analysis and numerical examples are
given to show the importance of propagator accuracy in the evaluation of resolution in
complex media.



 

Introduction 

Spatial resolution has been studied by Beylkin et al. (1986) based on generalized Radon 
transform and the mapping of domain integration (frequency band and spatial aperture) into a 
spectral coverage in spatial frequency domain (wavenumber domain). The mapping is done 
by simple ray-tracing which does not take into account of the frequency dependence and other 
wave phenomena. Since then, the topic has been investigated by many authors from different 
points of view (Chen and Schuster, 1999, 2001; Gelius et al., 2002; Gibson and Tzimeas, 
2002). While these analyses are useful tools for the resolution problem, most analyses are 
formulated to calculate the influences of acquisition system to resolution, and did not look at 
other factors in the imaging/migration process, such as the accuracy of the propagators, errors 
in velocity model, etc. Some authors called such a resolution as the resolution limit, the best 
resolution of an acquisition system can get. In this research, we formulate the resolution of 
imaging system, which includes the acquisition system and imaging (migration) process. The 
analysis is based on the inverse theory and the local angle domain decomposition of Green’s 
functions. This resolution of imaging system represents and quantifies the actual resolution 
we observed in the migrated images and provides a theoretical basis for the estimation of 
different factors influencing the resolution and image quality in complex media. The other 
important feature of our formulation is that the resolution problem is treated totally based on 
wave theory and no high-frequency asymptotic approximation is made.  

Formulation of spatial resolution based on inverse theory 
Spatial resolution can be studied under the general frame of inversion theory. 

Resolution operator or the discrete form, resolution matrix has been defined to quantify the 
resolution of parameter inversion by a particular inversion scheme (Aki and Richards, 1980; 
Tarantola, 1987). The resolution matrix has dependence on both the acquisition system and 
the inversion scheme. Assume the acquisition process can be modeled by 

Fm d=                                                                                 (1) 
where F is the forward modeling operator and d is the data. If we adopt a specific inversion 
operator B to apply to the data we can get a set of model parameters mI, which is different 
from the real m, 

Im Bd=                                                                                (2) 
Substituting (2) into (1) we get the relation between the inverted model and the real model 

Im BFm=   ,                                                             (3) 
and the resolution matrix (or operator) is defined as  

R BF=                                                                    (4) 
For an exact inversion of a well-posed problem, we should have  

R I=                                                               (5) 
where I is the identity matrix. For most the cases, the resolution matrix is not an identity 
matrix and the spreading of the matrix elements along the diagonal give some quantitative 
measure of the parameter resolution of the inversion. For the sake of simplicity, here we will 
use the noiseless formulation. For the stochastic approach (Tarantola, 1987) a similar 
derivation can be obtained. 

The imaging problem can be formulated as a specific inverse problem. We assume the 
media can be decomposed into a smooth variation of velocity and a sharp jumps of impedance 
(discontinuities). The velocity distribution of the background media can be derived with 
different approaches and is assumed known in the “imaging problem”. The unknowns in the 
imaging problem are the parameter strengths and their locations (distribution). For the 
problem of spatial resolution, we assume the scattering coefficients everywhere are unity and 
therefore are known. Then the resolution matrix is totally defined by the spatial resolution.  

In the following, we use the migration operator (simply backpropagation integral) as the 
inversion operator (here the imaging operator) to show the effects of different factors to the 
final resolution. We can write the space-domain formulations for modeling (acquisition 
process) and imaging (migration) as: 
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where su is the scattered wave field observed on the surface at gx excited by a source on the 
surface at sx . GM  is the Green’s function of the modeling (acquisition) process, which may 
include all the factors (geometric spreading, intrinsic and scattering attenuation, boundary 
scattering, etc.) for the real heterogeneous media; GI  is the Green’s function of inversion 
process, which could be quite different from MG  (see Figure 1). The integrations on the 
receiver aperture and source aperture are for the prestack migration process. W’s are the 
weighting functions for integrations. The integration on the receiver aperture gA is the 
Rayleigh integral which simulates the backpropagation process. The integration on frequency 
is from the imaging condition which states that the downward extrapolated source field and 
the scattered field will meet at zero time at the scattering points. In (7) we used the cross-
correlation imaging condition. Other imaging conditions for correcting the imaging amplitude 
can be also applied, but the general conclusion of resolution analysis will not be influenced. 

 

 
Figure 1. Schematic diagrams showing the modeling (data acquisition) and imaging (inversion) 

processes. 
 

Write modeling and imaging process (6) and (7) into operator form, resulting in 

| 0 0( , ) ,, ( , ) (g s g sx x x x )x xω ω=U F S                                                 (8) 

( ) ( | , , ) ( , , )s g s gx x x x x xω ω=I B U                                             (9)     

where F is the acquisition (modeling) operator and B is the imaging operator which invert the 
data U into the image I. Therefore the resolution operator is obtained as  

|0 ,( , ) ( | , , ) ( , )s g g sx x 0x x x x x xωω=R B F                                       (10) 
The kernels for the resolution operator can be obtained as 
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For zero-offset (zero receiver aperture) acquisition, or monostatic measurement in radar 
terminology, the above defined resolution matrix is degenerated to 
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Note that the amplitude function in (12) is different from the exploding-reflector modeling. In 
the latter case, (12) is further simplified to 
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The above derived resolution matrix (operator) is in fact the spatial resolution matrix 
(resolution operator)  for the whole acquisition and migration process (the imaging system). 
The matrix element 0( , )R x x  is called the resolving kernel of the resolution operator, which is 
the point spreading function (PSF)of the imaging system. In this way the point spreading 
function (impulse response) is defined under the guidance of general inversion theory. 

If we set the scatterer’s distribution 
0( ') ( ' )s x x xδ= −  in equation (6) and substitute it into 

equation (7), we see the equivalence of the imaging process to the calculation of resolution 
matrix. This gives us the numerical procedure of calculating the resolution matrix or PSF for 
any imaging system.  

If we assume that an exact Green’s function 
MG  is used as the inverse propagator 

IG , 
then the effect of imperfect propagators can be eliminated, and the resolution is totally 
determined by the data aperture. The resolution derived this way is a theoretical limit of the 
acquisition system similar to the resolution studied by previous investigations (Beylkin et al., 
1986; Gelius et al., 2002; Gibson and Tzimeas, 2002). 

 
Angular-spectral representation of point spreading function (PSF) 

Angular-spectral representation of resolution of PSF is more intuitive. We can see 
directly the information coverage in the local angle domain. We perform local 3D 
Fourier transform on 0( , )R x x with respect to x with coordinate center at 0x : 

0( )
0( , ) ( , ) ( , )iK x x

v
R K x d xe W x x R x x− −= ∫ i

0 0                                      (14)
 

where K  is the 3D wavenumber vector and 0( , )W x x is a 3D window function to localize 

0( , )R x x . For simplicity, we set the weighting functions sW and gW  in migration as unity. 
Substituting (11) into (14) we obtain 
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where 0( , , ; ')G x K xω  is the beamlet decomposition (or local plane-wave decomposition) of the 
Green’s function (Wu and Chen, 2002) around 0x , and x’ is the source or receiver position. 
 
The influence of propagator accuracy to the resolution 

To show the difference between the real resolution for an imaging system and the 
theoretical resolution limit, we give an example of imaging using exploding reflector data 
generated by a full-wave finite difference algorithm, in a random medium (Figure 2). We use 
both the ray-Kirchhoff migration method and the dual-domain one-way wave propagator 
method as the migration operator. Since the medium has random heterogeneities with scale 
comparable to the wavelength of the central frequency, the ray approximation of the Green’s 
function can produce large errors for long range propagation. This error has severe 
consequences on the resolution matrix of the imaging system. As shown in Figure 2, both the 
multi-arrival and first-arrival ray-Kirchhoff migrations give distorted point spreading 
functions, and the horizontal resolutions are also degenerated (bottom panel of Figure 2). 

 
Conclusions 

The resolution of an imaging system defined in this paper based on the inverse theory 
includes both the effects of acquisition system and migration process. It represents and 
quantifies the actual resolution we observed in the migrated images. If we consider only the 
influence of the acquisition system, the resolution obtained is the resolution limit of the 
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system. Theoretical analysis and numerical examples have shown the importance of 
propagator accuracy to the evaluation of resolution in complex media. 
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Figure 2: Top: velocity model of point scatterers in a random medium; Middle: point spreading 
functions using the multi-arrival and first-arrival ray-Kirchhoff migration operators; Bottom: horizontal 

resolution curves of the same acquisition system but different migration operators 

 


