Finnigan™ TC/EA

High Temperature Conversion
Elemental Analyzer
For many years the on-line isotope ratio analysis of organic bulk samples for 13C/12C, 15N/14N and 34S/32S have been performed rapidly, easily and precisely using a conventional Elemental Analyzer – continuous flow isotope ratio MS (IRMS). Measurement of 18O/16O and D/H ratios in organic and inorganic matter had been restricted to off-line sample preparation in the past. The new Finnigan TC/EA (High Temperature Conversion Elemental Analyzer) is the technological breakthrough offering the benefits of continuous flow IRMS to on-line oxygen and hydrogen isotope ratio analysis of solid and liquid bulk samples.

Direct Analysis of 18O/16O and D/H in organic and inorganic samples

- Automated analysis with high sample throughput
- Only small sample amounts required
- Low blanks and negligible memory
- Oxygen isotope ratios from organic compounds, water and selected inorganic compounds
- Hydrogen isotope ratios from organic compounds and water
- Nitrogen and oxygen isotope ratios from nitrates
Principle of Operation

Quantitative high temperature conversion, also referred to as pyrolysis, is a new technique in which oxygen present in a compound is converted to CO, and hydrogen contained in a compound is converted to H₂. The process is rapid and quantitative in a reducing environment at high temperatures, typically exceeding 1400 °C.

The patented reactor consists of a glassy carbon tube with glassy carbon filling, ensuring that neither sample nor reaction gases can get into contact with oxygen containing surfaces (e.g. Al₂O₃) while at high temperatures. Only this technology enables memory-free conversion reactions with no restrictions on compound type.

The reaction gases are separated in an isothermal gas chromatograph, which is also part of the Finnigan TC/EA. The gases are admitted to the IRMS via the Finnigan ConFlo III interface. The Finnigan ConFlo III interface allows automatic sample gas dilution and generation of reference gas pulses, enabling individual referencing of each sample gas peak.

- No fractionation
- Lowest memory
- No restrictions on organic samples
- Usable for selected inorganic samples
- Referencing of each peak using reference gas

The Finnigan TC/EA preparation system and Finnigan ConFlo III interface are outlined in the schematic diagram. This combination facilitates the conversion reaction, separation of reaction gases, transfer into the IRMS and referencing against standard gases.

Principle of High Temperature Conversion

[^J. Koziet et E. Falou, French patent No. 2 734 363]
[^Méthode de mesure de la teneur en O et/ou N d’une substance chimique, appareillage et dispositif de pyrolyse]
The Finnigan TC/EA can be used for simultaneous hydrogen and oxygen isotope ratio determination of all organic compounds. Due to its very high maximum operation temperature, restrictions to individual sample classes do not exist.

For the analysis of hydrogen isotope ratios the IRMS must be capable of ‘He’ suppression at the DH collector (Finnigan MAT 253, DELTA V Plus and DELTA V Advantage). Selected inorganic compounds can also be analyzed, such as nitrates (N and O), phosphates (O) and sulfates (O).

One important application is the isotope ratio analysis of hydrogen and oxygen in water samples. For this application an autosampler for liquid samples can be added to the system, replacing the standard autosampler for solid samples. Typical sample amounts for water are < 0.5 µL. The analysis of smaller water samples depends on the quality of syringe transfer and injection. Both isotope ratios can be determined within one run, making this setup perfectly suitable for e.g. high throughput doubly-labeled water analysis or screening of water resources.

Typical measurement time is about 5 minutes per sample for oxygen and less than 3 minutes for hydrogen isotope ratio determination. A determination of both isotope ratios in one run takes about 6 minutes.

Applications

<table>
<thead>
<tr>
<th>Isotope ratios of single elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. H → CO → δ¹8O, wt% O</td>
</tr>
<tr>
<td>2. H → H₂ → δD, wt% H</td>
</tr>
</tbody>
</table>

IRMS², isotope ratios from two elements

| 3. H + O → H₂ → δD, wt% H |
| ____________________________ |
| + CO → δ¹8O, wt% O, H/O |

a. solids: organic and inorganic samples

b. water: H₂ O + C → CO + H₂ (requires liquid injector)

| 4. N + O → N₂ → δ¹⁵N, wt% N |
| ____________________________ |
| + CO → δD, wt% O, N/O |

| e.g. 2 AgNO₃ + 6 C → 2Ag + 6 CO + N₂ |
Specifications and Installation Requirements

The Finnigan TC/EA can be connected to any current Finnigan IRMS equipped for continuous flow applications. If hydrogen isotope ratios are to be analyzed, the IRMS must be equipped with an energy filter to suppress 4He$^+$ ions on the DH collector (Finnigan MAT 253, DELTA V Plus and DELTA V Advantage).

Gases

High purity helium (99.999 % or better).

Reference gases (CO, N$_2$, H$_2$) with pressure regulators.

To use the Finnigan TC/EA with CO and H$_2$ reference gas, the laboratory must be equipped with CO and H$_2$ detectors.

Power

230 V, single phase, 8 A.

Dimensions and weight

45 x 70 x 50 cm (W x D x H), 59 kg.

External precision for isotope ratios, H, O, (n = 10), δ-isotope

<table>
<thead>
<tr>
<th></th>
<th>18O/16O D/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acid at natural abundance for H and O - IRMS†</td>
<td>0.4 ‰ 3 ‰</td>
</tr>
<tr>
<td>50 µg O, 25 µg H</td>
<td>0.4 ‰ 3 ‰</td>
</tr>
<tr>
<td>Water for H and O - IRMS†</td>
<td>0.2 ‰ 2 ‰</td>
</tr>
<tr>
<td>0.5 µL</td>
<td>0.2 ‰ 2 ‰</td>
</tr>
</tbody>
</table>
Laboratory Solutions Backed by Worldwide Service and Support

Tap our expertise throughout the life of your instrument. As an industry leader in analytical instruments, Thermo extends its support throughout our worldwide network of Thermo-trained and certified engineers who are experts in laboratory technologies and applications. Put our team of experts to work for you in a range of disciplines, from system installation, training and technical support, to complete asset management and regulatory compliance consulting. Improve your productivity and lower the cost of instrument ownership through our product support services. Maximize uptime while eliminating the uncontrollable cost of unplanned maintenance and repairs. When it’s time to enhance your systems, Thermo also offers certified parts and a range of accessories and consumables suited to your application.

To learn more about our products and comprehensive service offerings, visit our Web site at www.thermo.com.