USING CARBON AND NITROGEN ISOTOPE VALUES TO INVESTIGATE MATERNAL STRATEGIES IN NORTHEAST PACIFIC OTARIIDS

SETH D. NEWSOME
PAUL L. KOCH
Department of Earth Sciences, University of California,
Santa Cruz, California 95064, U.S.A.
E-mail: snewsome@pmc.ucsc.edu

MIKE A. ETNIER
Department of Anthropology, University of Washington,
Seattle, Washington 98195, U.S.A.

DAVID AURIJOLES-GAMBOA
Centro Interdisciplinario de Ciencias Marinas,
Instituto Politécnico Nacional. Ave. IPN s/n., Colonia Playa Palo de Santa Rita,
La Paz, Baja California Sur, CP 23060, México

ABSTRACT

We examine the utility of stable carbon and nitrogen isotope variations to characterize the length of the nursing/lactation period and age at weaning for two northern Pacific otariid species, the northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus). We used two sampling strategies to measure ontogenetic trends in isotope value, and compared our results to observational data on the reproductive strategies used by these otariids. For Zalophus, we found evidence for ^{15}N enrichment and ^{13}C-depletion in bone collagen representing the first and second year of growth, which is consistent with the $\sim12–14$-mo weaning age in this population after a suitable turnover rate for bone collagen is considered. Analysis of individual tooth annuli from a different suite of Zalophus specimens suggests that half of the individuals were weaned at ~12 mo of age, and half were dependent on milk for a portion of their second year. For Callorhinus, bone collagen for age classes that contain pre-weaned individuals were ^{15}N-enriched, but values were significantly lower in specimens between 6 and 20 mo of age. These ^{15}N-enriched values, presumably acquired during nursing between 0 and 4 mo of age in Callorhinus, were not present in specimens older than 12 mo of age. Thus complete bone collagen turnover in young-of-the-year occurs in 8–10 mo. ^{15}N enrichment is evident in the first annulus of female Callorhinus individuals, but is not detectable in males. Analyses of Callorhinus tooth annuli show no ontogenetic trends in $\delta^{13}C$ values. Our study indicates that nitrogen, and in some cases carbon, isotopes can be used to assess reproductive strategies in marine mammals. When coupled with accurate age estimates based on bone growth regressions, this isotopic technique can be applied to historical or fossil otariids to gain insight into the flexibility of maternal strategies within and across species.
Key words: northern fur seals, *Callorhinus ursinus*, California sea lions, *Zalophus californianus*, maternal strategy, stable isotopes, otariids, nursing behavior.

The use of natural variations in stable isotope ratios to study the diet and migration of animals and humans is an increasingly common approach in ecology and archaeology (Fogel 1997, Kelly 2000, Rubenstein and Hobson 2004). Quantitative estimates of dietary sources can be made using different tissues if appropriate “tissue-specific” fractionation factors are used to account for differences in metabolic and biosynthetic processes. In most cases, consumers are enriched in the heavy isotope (13C or 15N) relative to their diets. For similar tissues or whole bodies, the enrichment is roughly 1% for carbon and 3% for nitrogen. In the case of nitrogen isotopes, this strong 15N enrichment with trophic level has been attributed to excretion of nitrogenous waste (e.g., urea) that is enriched in 14N relative to the body. Trophic level enrichment in heavy isotopes has been used extensively to characterize terrestrial and marine food webs and to determine the major source(s) of prey forage for both carnivores and herbivores in various ecosystems (Hobson et al. 1994, Michener and Schell 1994).

The isotopic fractionations associated with mother-to-offspring transfer of nutrients during pregnancy, lactation, and weaning are still poorly understood. Theoretically, if lactating mothers catabolize their own tissues to produce milk, their nursing offspring should have isotope values indicating that they are feeding a trophic level higher than their mother. Recent studies, however, contend that the model of increased trophic level of nursing offspring in relation to mother may be too simplistic (Jenkins et al. 2001), and the magnitude of animal-to-diet 15N enrichment is a function of the protein quality (Robbins et al. 2005) or the C:N ratio (i.e., nitrogen concentration) of the diet (Pearson et al. 2003). With regard to our study, trophic level enrichment factors of \sim2‰–4‰ are common for diets of fish or milk, which contain high-quality protein and have relatively high nitrogen concentrations in comparison to herbivorous diets.

For carbon isotopes, the trophic level prediction is complicated by the fact that milk has a high lipid content, and lipids are 13C-depleted relative to proteins (DeNiro and Epstein 1978). An animal that produces milk with a high lipid content, such as an otariid with milk that is \sim30–40 wt% lipid (Costa 2002), feeds its young a food source with a relatively low δ^{13}C value. There is no difference in δ^{15}N value between lipids and associated proteins, so the consumption of milk rich in lipids would not affect the \sim3‰ 15N enrichment. Besides the \sim1‰ trophic level enrichment discussed above, another factor that could potentially act to offset the “lipid effect” are differences in metabolic routing. Because collagen primarily represents a protein pathway, carbon sourced from milk protein will be preferentially routed into bone or tooth dentin collagen before carbon sourced from milk lipids, which is more likely to be assimilated into body lipids (i.e., blubber) or consumed during energy-producing metabolic reactions. As mentioned above, however, otariid milk has a substantial lipid component (\sim30–40 wt%), thus it is safe to assume that a considerable portion of milk lipid carbon is used to construct bone collagen or tooth dentin, especially during periods of rapid growth. After considering these factors, we predict that nursing offspring should have higher δ^{15}N values, but either lower or higher δ^{13}C values than their mothers, depending on the lipid content of the milk.

Most studies investigating these issues are from the archaeological literature, where nitrogen isotopes have been used to assess weaning age in modern and prehistoric
human populations. Controlled studies on modern humans have found that nursing young have keratin $\delta^{15}N$ values \sim2.5‰ higher than their mothers, whereas neonates and weaned children have keratin $\delta^{15}N$ similar to their mothers (Fogel et al. 1989, 1997). In prehistoric human populations, young age classes have higher $\delta^{15}N$ values than associated adults, allowing researchers to constrain age at weaning in various archaeological and environmental contexts (Katzenburg et al. 1993, Schurr 1997, Wright and Schwarz 1999, Fuller et al. 2003). In other mammals, nursing young always have higher $\delta^{15}N$ values relative to those of their mother; however, fetal and neonate age classes may also have higher $\delta^{13}N$ values than their mothers depending on the species (Balasse et al. 2001, Jenkins et al. 2001, Polischuk et al. 2001).

Human ontogenetic carbon isotope trends are more complex. Studies of prehistoric human populations show no consistent pattern of difference in $\delta^{13}C$ values between young and adult individuals. In some cases, nursing offspring have higher tooth dentin $\delta^{13}C$ values than adults (Fuller et al. 2003); other studies show a high degree of inter-individual variability that makes it impossible to identify a consistent trend (Wright and Schwarz 1999). In other mammal species, nursing and young age classes tend to have lower $\delta^{13}C$ values than adults (Polischuk et al. 2001, Witt and Aylliffe 2001).

Isotopic studies of nursing and weaning in marine mammals have used ontogenetic series of bone elements or annuli in dentin from sectioned canine teeth. Analysis of tooth annuli in Steller sea lions (Eumetopias jubatus) shows that nursing young have higher tooth dentin $\delta^{15}N$ values (\sim2‰–3‰) and lower $\delta^{13}C$ values (\sim2‰) than adults (Hobson and Sease 1998). Similarly, bones of pre-weaned northern fur seals (Callorhinus ursinus) from archaeological sites on the coast of California have bone collagen $\delta^{15}N$ values 3‰ higher and $\delta^{13}C$ values \sim1‰ lower than older age classes (Burton et al. 2001). As mentioned above, low $\delta^{13}C$ values in nursing or young pinnipeds is most likely a result of consuming milk that is rich in ^{13}C-depleted lipids.

The aim of this study is to explore the utility of carbon and nitrogen isotopes as proxies for nursing behavior in otariids through analysis of two species with very different weaning behaviors. Like most otariids, California sea lions (Zalophus californianus) have a relatively long lactation period that allows the pup to develop swimming and foraging skills before complete weaning (Kovacs and Lavigne 1992). Most pups are weaned by \sim10–12 mo of age, but this appears to vary geographically; the age at weaning in Gulf of California populations is higher and more variable than in the southern California stock (Heath 1989). The weaning process is gradual and facultative nursing has been observed in the second or even third year in the Gulf of California (Francis and Heath 1991). The degree to which prolonged nursing plays a nutritional vs. social role in yearling/juvenile Zalophus has yet to be determined.

In contrast, northern fur seals (C. ursinus) adhere to a strict attendance and nursing strategy thought to be an adaptation to high latitude breeding (Gentry and Holt 1986, Gentry 1998). In the Pribilof Islands, the breeding season begins in late June and runs through mid-November (\sim125 d). During the breeding season, lactating females make regular foraging trips to sea that range from 4 to as many as 16 d, returning to the rookery to nurse their pups for an average of 2–3 d. In contrast to other NE Pacific otariids, northern fur seals undergo abrupt weaning at \sim4 mo of age, and young do not nurse beyond their first year of life. The only other otarid with a similar attendance and nursing strategy is the Antarctic fur seal (Arctocephalus
gazella), which has a slightly shorter nursing period, lasting only \sim120 d (Doidge et al. 1986).

We present data on ontogenetic isotope trends from Callorhinus and Zalophus that were generated using two different sampling strategies: (1) a population-level (cross-sectional) approach using bulk bone collagen isotope values of specimens that were aged either with bone growth regressions or counts of annuli in canine teeth, and (2) an individual-level (longitudinal) approach where “life-history” records of δ^{15}N and δ^{13}C values were produced by sub-sampling dentin annuli of canine teeth.

MATERIALS AND METHODS

All Zalophus bone elements were sampled from crania collected on Isla Santa Margarita, Baja California Sur (BCS) off the Pacific coast of Baja California. These specimens are archived at CICIMAR (La Paz, BCS) and were collected from individuals that stranded on the Isla Santa Margarita rookery over the past two decades. Unfortunately, detailed collection data were not recorded and there are no bone growth regressions for California sea lions. As a consequence, it is difficult to resolve age at a sub-annual resolution for this species. For each cranium, the number of annuli from a sectioned canine tooth was counted to produce annual bins (i.e., 0–1, 1–2, 2–3 yr of age) that offered conservative annual-resolution age estimates. Once age had been accurately assessed, a small fragment of bone was removed from the mandible of each cranium using a low-speed cutting tool and stored in a glass scintillation vial for transport.

In addition, an upper canine tooth from selected Baja California Zalophus adults was removed for sectioning and sub-sampling on a Merchantek micromill system. Included in the Zalophus sample are four individuals from the Isla Santa Margarita rookery on the Pacific coast (the same rookery from which the Zalophus bone collagen ontogenetic series is derived), one individual from the Los Islotes rookery in the southern Gulf of California (IL-ZC02), and one individual sourced from the Isla Lobos rookery in the northern Gulf of California (ISL-ZC03). All Zalophus canines were opportunistically collected over the past two decades from stranded adult male individuals. None of the Zalophus canine specimens were derived from individuals that were used to construct the bone collagen ontogenetic series.

Canine teeth were cut in half longitudinally using a low-speed, water-cooled sectioning saw and polished using fine sandpaper (\sim600 grit). The inner surface of each tooth was etched lightly in 5% formic acid to help distinguish annuli. We assume that such treatment did not influence δ^{13}C and δ^{15}N values, since the surface portion of the tooth represents a small fraction of the total sample and all specimens were treated in a similar fashion.

Callorhinus bone collagen samples were acquired from archived specimens at the California Academy of Sciences (San Francisco, CA), Smithsonian Institution (Washington, DC), and National Marine Mammal Laboratory (Seattle, WA). All specimens were collected on rookeries in the Pribilof Islands over the past five decades and were either sacrificed specifically for ontogenetic studies (Scheffer and Wilke 1953) or were natural mortalities obtained opportunistically. Furthermore, all Callorhinus bone samples used in this study were selected from a list of specimens whose age...
at death was determined by Etnier (2002). A small fragment of bone was removed (using pliers) from inside the cranial vault of each specimen and stored in a glass scintillation vial for transport. The age-at-death of each specimen was calculated in fractions of years, with an age of zero corresponding to the date of birth. Fur seals have a narrow interval during which pups are born, with virtually all of the births falling within a few weeks of the mean birthing date (Bartholomew and Hoel 1953, Peterson 1965, Trites 1992, York and Scheffer 1997, Gentry 1998), which ranges from July 3rd to 11th on rookeries in the Pribilof Islands, AK. Only *Callorhinus* specimens sourced from the Pribilof rookeries were analyzed, but it was impossible to determine the exact rookery of origin for each specimen. When locality information was not recorded or was ambiguous regarding population of origin, specimen age was rounded to the nearest whole month or whole year, depending on the specificity of collection information. We assume that collection date is synonymous with the date of death, since most of the specimens were directly harvested for commercial, subsistence, or scientific purposes.

Callorhinus adult canine specimens were derived from adult males and females stranded on Reef Rookery on Saint Paul Island, AK from 2000 to 2005. These specimens were collected as part of annual mortality studies collected under MMPA permit number 782-1708. None of the *Callorhinus* canine specimens were derived from individuals that were used to construct the bone collagen ontogenetic series. These specimens were prepared as described above for *Zalophus*.

For δ¹³C and δ¹⁵N analysis, *Callorhinus* and *Zalophus* bone fragments were cleaned of soft tissue and demineralized in 0.5N hydrochloric acid (HCl) for ∼12–15 h at 5°C. The resulting material was treated repeatedly with a chloroform/methanol/water (2:1:0.8) mixture to remove lipids and then lyophilized. To isolate collagen, powdered tooth dentin samples were demineralized in 0.1N HCl for 24–36 h at 5°C, and the resulting organic matter was vacuum concentrated. Dried bone collagen (∼0.5 mg) and dentin samples (∼1.5 mg) were sealed in tin boats and analyzed using a Costech elemental analyzer interfaced with a Finnegan Delta Plus gas source mass spectrometer (Department of Geological and Environmental Sciences, Stanford University). As a control for the quality of bone or dentin collagen, we measured the carbon-to-nitrogen (C/N) ratios of each sample to test the possibility that isotopic values were altered postmortem. In addition, since powdered tooth dentin samples were not lipid-extracted, we wanted to ensure that our samples did not contain any ¹³C-depleted lipids, which have much higher C/N ratios than associated proteins (DeNiro and Epstein 1978). The atomic C/N ratios of all bone collagen and tooth dentin samples are 3.2–3.4, well within the range that characterizes unaltered protein (Ambrose 1990).

Results are expressed as δ values, δ¹³C or δ¹⁵N = 1,000[(Rsample/Rstandard) − 1], where Rsample and Rstandard are the ¹³C/¹²C or ¹⁵N/¹⁴N ratios of the sample and standard, respectively. The standards are Vienna-Pee Dee Belemnitite limestone (VPDB) for carbon and atmospheric N₂ for nitrogen. The units are expressed as parts per thousand or per mil (%). Repeated measurements of a gelatin standard (n = 100) yielded a standard deviation of <0.2‰ for both δ¹³C and δ¹⁵N values. Duplicate isotopic measurements were performed on ∼20% of all unknown samples and yielded an average absolute difference of 0.2‰ for δ¹³C values and 0.3‰ for δ¹⁵N values.

Statistical tests were calculated using the software program JMP (v5.0). Differences in bone collagen δ¹³C and δ¹⁵N values between the age classes discussed in the text were assessed using a one-way analysis of variance (ANOVA) followed by a post hoc Tukey pairwise comparison.
RESULTS

Northern Fur Seal Bone Collagen

A total of 55 bone collagen samples were collected from male and female *Callorhinus* specimens estimated to be between 2 and 28 mo of age. $\delta^{15}N$ and $\delta^{13}C$ results for the ontogenetic series are presented in Figure 1 and are segregated by sex. To characterize the ontogenetic trends that might be associated with weaning, these results are summarized in Figure 2, with specimens binned into 2–6, 6–8, 8–10, 10–12, 12–14, 14–20, and 20–28 mo age classes and plotted vs. mean $\delta^{15}N$ or $\delta^{13}C$ values (\pm one standard deviation). Data for both sexes were used to calculate the means and standard deviations in Figure 2. There is a robust trend in $\delta^{15}N$ value with age (Fig. 2A), with a significant decrease from 2–8 mo to 12–14 mo of age (ANOVA, $F = 3.13, P < 0.05$). There is also a significant difference in mean $\delta^{15}N$ values between individuals 12–28 mo of age and adult males and females (Tukey, $P < 0.05$; adult data from Burton and Koch 1999).

The $\delta^{13}C$ values, in contrast, show little to no trend through the ontogenetic sequence (Fig. 2B). The 2–6 and 6–8 mo age classes have lower mean $\delta^{13}C$ values than older age classes, but these differences in mean values among age classes are not significant using a one-way ANOVA ($F = 3.13$, Fig. 2B).

Because our *Callorhinus* ontogenetic series contains individuals collected over the past five decades, we plotted bone collagen $\delta^{15}N$ or $\delta^{13}C$ values of all individuals within a specific age group against collection year to test if there were temporal trends in isotope values not evident in our population-level approach. We found no correlation between carbon or nitrogen isotope value and collection year for any of the age groups.

California Sea Lion Bone Collagen

A total of 49 bone collagen samples were collected from male and female *Zalophus* mandibles estimated to be between 0 and 4 yr of age (Fig. 3). In addition, we sampled adult males and females (>7 yr old; ~10 per sex) collected from the Isla Santa Margarita rookery. The ontogenetic isotope curves for *Zalophus* are different than those for *Callorhinus*. The 0–1 and 1–2 yr age classes are $\delta^{15}N$-enriched; $\delta^{15}N$ values drop significantly in the 2–3 yr-old specimens. The differences in mean value among age classes are significant using a one-way ANOVA ($F = 3.11, P < 0.05$). The 0–1 and 1–2 yr age classes are not significantly different from one another, but are significantly different from the 2–3 and 3–4 yr age classes (Tukey, $P < 0.05$, Fig. 3A). Interestingly, $\delta^{15}N$ values for the 2–3 and 3–4 yr age classes are not significantly different from those for adults.

The 0–1 and 1–2 yr age classes have lower $\delta^{13}C$ values than the older age classes. Again, the differences in mean values among age classes are significant using a one-way ANOVA ($F = 3.11$) followed by a Tukey pairwise comparison test ($P < 0.05$). The 0–1 and 1–2 yr age classes do not differ significantly, but they are significantly different from the 2–3 and 3–4 yr age classes (Tukey, $P < 0.05$; Fig. 3B). Furthermore, $\delta^{13}C$ values for the 2–3 and 3–4 yr age classes are not significantly different from those for adults (>7 yr old).

Similar to the *Callorhinus* ontogenetic series, the *Zalophus* series contains individuals collected over a relatively long-time period. Again, we tested for temporal trends in *Zalophus* isotope values using the method described in the proceeding section and found no correlation between bone collagen $\delta^{15}N$ or $\delta^{13}C$ values and collection year.
Figure 1. δ^{15}N (A) and δ^{13}C (B) nursing curves for male and female northern fur seals from rookeries on the Pribilof Islands.

Individual Ontogenetic Patterns via Isotopic Analysis of Canine Tooth Annuli

Figure 4, 5 present the results of the individual-level approach, in which we analyzed collagen derived from consecutive annuli in tooth dentin to provide an annual-resolution ontogenetic sequence from individual animals. We have randomly
Figure 2. Mean $\delta^{15}N$ (A) and $\delta^{13}C$ (B) values for bone collagen from northern fur seals from the Pribilofs binned by age group. Error bars represent one standard deviation from the mean. The number of specimens in each age group is noted in parentheses. Mean values (± one standard deviation) for adult males and females are from Burton and Koch (1999). For $\delta^{15}N$, age groups not connected by the same lower-case letter are significantly different from one another based on a one-way ANOVA ($F = 3.13$) followed by a Tukey pairwise comparison test ($P < 0.05$). For $\delta^{13}C$, none of the age groups are significantly different from one another ($P > 0.05$).
Figure 3. Mean bone collagen δ^{15}N (A) and δ^{13}C (B) values for Isla Santa Margarita California sea lion specimens binned by age group. Error bars represent one standard deviation from the mean. The number of specimens in each age group is noted in parentheses. For δ^{15}N and δ^{13}C, age groups not connected by the same lower-case letter are significantly different from one another based on a one-way ANOVA ($F = 3.11$) followed by a Tukey pairwise comparison test ($P < 0.05$).
Figure 4. Early life history patterns of tooth dentin $\delta^{15}N$ (open circles) and $\delta^{13}C$ (diamonds) values for six northern fur seal individuals collected from the Pribilof Island rookeries. Sex and sample codes are noted for each specimen.

chosen six canine specimens of each species and have plotted carbon and nitrogen isotope values from annuli representing the first 5 yr of life.

Northern Fur Seal Tooth Annuli

Analysis of individual *Callorhinus* tooth dentin annuli reveal interesting ontogenetic and sex related patterns. First, $\delta^{15}N$ values show considerable variation across annuli representing the first 5 yr of life, varying by as much as 5‰ in some specimens. Females tend to show greater amounts of inter-annual variability in $\delta^{15}N$ values than males. Most of this variation in females relates to differences between the first annulus and subsequent annuli; the first annulus has $\delta^{15}N$ values that are 2‰–4‰ higher than subsequent annuli. None of the male specimens show this pattern. Male $\delta^{15}N$ values only vary by ~1‰–2‰ across annuli and none of the first annuli in male canines have considerably higher $\delta^{15}N$ values than subsequent annuli.
Figure 5. Early life history patterns of tooth dentin δ^{15}N (open circles) and δ^{13}C (diamonds) values for six male California sea lion individuals collected from rookeries in Baja California. Samples A–D are specimens from the Isla Santa Margarita rookery on the Pacific coast of BCS. Sample E was collected from Isla Lobos in the northern Gulf of California. Sample F was collected from the Islotes rookery in the southern Gulf of California. Sex and sample codes are noted for each specimen.

There are no clear patterns in the δ^{13}C data from annuli. Overall, there is a smaller amount of variation in δ^{13}C values across annuli (1‰–2‰) in comparison to δ^{15}N values. Only one specimen (male; Fig. 4F) has lower δ^{13}C values in the first annulus in comparison to subsequent annuli. The other specimens show little variation across annuli with no clear ontogenetic patterns.

California Sea Lion Tooth Annuli

All the *Zalophus* canine specimens included in this study show the same general δ^{15}N pattern, with relatively high values in year 1 followed by a decrease of $\sim 3\%$ in some individuals in year 2, and a stabilization of values in all specimens by year 3. In some cases (Fig. 5C, F), δ^{15}N values for the second annulus are intermediate in
comparison to values for years 1 and 3. In addition, there is a considerable difference in the range of δ¹⁵N values between individuals from Isla Santa Margarita on the west coast of Baja California (Fig. 5A–D) and animals from Gulf of California rookeries (Fig. 5E, F). δ¹⁵N values for Gulf of California individuals are ~3–4‰ higher than values for animals from the Pacific coast of Baja California.

Tooth dentin δ¹³C patterns in *Zalophus* are more complex. Overall, there is less variation in δ¹³C values in comparison to δ¹⁵N values. Furthermore, there is no difference in δ¹³C values for animals from the Pacific Ocean (Isla Santa Margarita, Fig. 5A–D) and the Gulf of California (Fig. 5E, F). For half of the individuals sampled, the first year has the lowest δ¹³C value in comparison to subsequent annuli. In some cases, however, δ¹³C values are relatively uniform throughout the time series and fluctuate less than 1‰ from years 1 to 5.

DISCUSSION

Overall, the ontogenetic trends in the *Callorhinus* and *Zalophus* bone and tooth annuli series are consistent with the known isotope enrichments related to trophic level and lipid content among the diets of pre-weaned pups, weaned juveniles, and adults. Pre-weaned pups feed one trophic level higher than their mothers, because females remobilize their body tissues to synthesize milk. As a consequence, pups are ¹⁵N-enriched by ~3‰ relative to their mothers. Because pinniped milk is extremely rich in ¹³C-depleted lipids in comparison to the piscivorous diet of weaned animals, pre-weaned pups have lower δ¹³C values than older individuals (though not significantly so in *Callorhinus*). A more detailed evaluation of the ontogenetic isotope patterns requires that we consider the differences in time-resolution of the bone series for each species, the differences in turnover rates for the two tissues analyzed, and other sources of variation in the isotope compositions of pinnipeds not specifically related to weaning.

The *Callorhinus* ontogenetic bone series has sub-annual time resolution and in the first year of life, rapid growth leads to rapid remodeling and turnover. Weaning occurs at 4 mo of age. Weaning is signaled by the slight drop in δ¹⁵N values between the 2–6 and the 6–8 mo age classes; values continue to decline until the nursing signal is completely diluted by bone turnover by the 10–12 mo age class. If *Callorhinus* begin to ingest solid food shortly after weaning and we assume that recently weaned animals consume similar prey types as juveniles between 1 and 2 yr of age, it takes ~8 mo for the δ¹⁵N weaning signal to be completely stripped from bone collagen by turnover. Furthermore, *Callorhinus* between 12 and 28 mo of age have lower bone collagen δ¹⁵N values than adults, most likely because these juveniles feed at a lower trophic level than adults.

The ~2–3 mo age control available for the *Callorhinus* bone collagen series allows us to accurately determine the age at which weaning occurs in this species. Furthermore, the significant drop in trophic level after weaning is only seen in δ¹⁵N values of the ontogenetic series (Fig. 1A, 2B). There is no robust trend in δ¹³C values from either the ontogenetic bone series (Fig. 1B, 2B) or sectioned canine specimens (Fig. 4). It is difficult to assess why the ontogenetic trend in δ¹³C values is so much less robust than the δ¹⁵N trend. It may be due to the difference in the relative magnitude of the signal. δ¹⁵N values vary by greater than 5‰ from the 3–6 to 12–14 mo age class, whereas δ¹³C values only vary by ~2‰ over this age range.
Previous studies have shown that Gulf of California *Zalophus* are weaned at \(\sim 12 \) mo of age (Auriolos-Gamboa 1989). While we have no data on the subject, in theory, growth rates should decrease with age, especially in otariids such as *Zalophus*, where before weaning, nursing animals begin to supplement their diet with solid foods that have a lower caloric content than milk (Auriolos-Gamboa 1989, Costa 2002). By extension, bone collagen turnover rates may be slightly slower for juvenile *Zalophus* older than 12 mo of age in comparison to 5–12-mo-old *Callorhinus*. Assuming bone collagen completely turns over on the order of 10–12 mo for *Zalophus* yearlings, milk is a major dietary component for Isla Santa Margarita juveniles up to and perhaps slightly beyond their first birthday.

Other than indicating that weaning is not very rapid in *Zalophus* in comparison to *Callorhinus*, isotopic analysis of *Zalpohus* bone ontogenetic series provides a coarse estimation of weaning age. This is partly due to the lack of sub-annual resolution in age control for *Zalophus*, and will continue to be an issue until more known-age individuals can be measured and adequate bone regressions can be constructed for this species. The low resolution in age control may also contribute to the apparent similarity in mean carbon and nitrogen isotope values for *Zalophus* juveniles and adults. In *Callorhinus*, juveniles and adults have different \(\delta^{15}N \) values. We suspect these reflect differences in the trophic level of prey consumed by each age group, but spatial separation in foraging habitat for adults and juveniles, which can create isotopic differences in similar prey types in different locations, cannot be ruled out for either species. Spatial effects are more likely to contribute to the isotopic differences seen among *Callorhinus* age groups because the species is more migratory than *Zalophus* and spatial gradients in isotope values at the base of the food web are more pronounced in the North Pacific and southern Bering Sea than in the California Current.

The ontogenetic series from tooth annuli were sampled to yield an annual time-resolution. Primary dentin does not experience extensive remodeling and turnover, but protein turnover from other body pools releases previously deposited amino acids to the circulating pool in the body that are fixed in continuously deposited tissues like dentin and hair (Ayliffe et al. 2004). At present, we cannot provide a firm quantitative estimate of the extent to which this process would “smooth” isotopic transitions recorded in tooth annuli, but it seems likely that the bulk of the isotopic equilibration to a new diet occurs in 1 or 2 mo (Ayliffe et al. 2004).

In the tooth annuli series from *Callorhinus* canines, only females record a drop in \(\delta^{15}N \) values between the first and second year of growth; males show no clear ontogenetic patterns in dentin \(\delta^{15}N \) values. The lack of a nursing signal in the first annulus of male *Callorhinus* canine specimens may be the result of differences in growth rates between young males and females. Male *Callorhinus* canine teeth tend to be larger than female teeth (Huber 1994), and they have thicker annuli. For males, the nursing signal deposited in the first 4 mo of life may be offset by a “larger” (i.e., thicker) foraging signal in the subsequent 8 mo because male growth rates are faster in comparison to females. In this study, we typically used a 600–700 \(\mu \)m thick carbide drill bit to sample the entire first annulus of female teeth and used an 800–1,000 \(\mu \)m drill bit for male specimens. This difference in thickness could account for the lack of a nursing signal in male specimens if the extra material in male teeth is deposited post-weaning. Overall, ontogenetic series of isotope values from *Callorhinus* tooth annuli are a less reliable and accurate indicator of weaning age in comparison to the sub-annual age control available for the bone ontogenetic series.
Differences in the isotopic trends from the *Zalophus* bone ontogenetic series in comparison to those from tooth annuli highlight differences in turnover rates of these respective tissues. As mentioned above, extensive remodeling and turnover does not occur in primary dentin, thus $\delta^{15}N$ and $\delta^{13}C$ values from tooth annuli represent an ontogenetic series with true annual resolution. For *Zalophus*, $\delta^{15}N$ and $\delta^{13}C$ values from tooth annuli (Fig. 5) suggest that several individuals were weaned slightly beyond their first birthday. For these individuals, isotope values of the annuli representing the second year of growth are intermediate to values of the first and third annuli. In contrast, there is no difference in $\delta^{15}N$ and $\delta^{13}C$ values of the 0–1 and 1–2 yr age classes from the ontogenetic bone series, with a significant shift from the 1–2 to 2–3 yr age class. Coupling results from teeth and bone suggests that complete bone collagen turnover occurs on the order of 10–12 mo for yearling *Zalophus*, a slightly slower turnover rate in comparison to young *Callorhinus*. It appears that milk is an important source of nutrition for these *Zalophus* individuals into their second year; however, the majority of the second annulus was deposited while the animal was nutritionally dependent on solid food, characterized by lower $\delta^{15}N$ and higher $\delta^{13}C$ values in comparison to milk. Whether these animals nurse facultatively throughout their second year or are dependent on milk for only the first few months of their second year is difficult to assess. It is likely that these individuals were completely weaned as yearlings (∼12–14 mo), and spent most of their second year foraging on their own, with little nutritional help from their mother. As mentioned above, it is common to observe young juveniles (12–14 mo old) suckling from an adult female that does not appear to have a pup, especially early in the summer breeding season. In a 2004 population census of eight rookeries in the Gulf of California, 3.1% of the juveniles counted (most likely yearlings) were observed nursing from an adult female (Table 1). If such a proportion of juveniles are still consuming milk in a single and rapid scan of each rookery, the percentages we observe likely represent a conservative estimate, and the actual number of nursing juveniles must be higher. Overall, isotopic analysis of tooth dentin provides a better assessment of weaning age in *Zalophus* in comparison to bone collagen due to the lack of sub-annual age control for ontogenetic bone series and differences in turnover rates in teeth vs. bone.

A more comprehensive study of *Zalophus* individuals from various rookeries across its breeding range may allow for the identification of geographical variation in reproductive strategies and help quantify the relative importance of milk in the diets of pups and young juveniles from different populations that forage in different

<table>
<thead>
<tr>
<th>Rookery</th>
<th>Juveniles</th>
<th>Suckling</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jorge</td>
<td>382</td>
<td>16</td>
<td>4.1</td>
</tr>
<tr>
<td>Isla Lobos</td>
<td>192</td>
<td>4</td>
<td>2.1</td>
</tr>
<tr>
<td>Il Granito</td>
<td>132</td>
<td>5</td>
<td>3.8</td>
</tr>
<tr>
<td>Los Cantiles</td>
<td>97</td>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>Los Machos</td>
<td>77</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>El Partido</td>
<td>84</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>El Rasito</td>
<td>86</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>S. P. Martir</td>
<td>171</td>
<td>8</td>
<td>4.6</td>
</tr>
<tr>
<td>Mean (± standard deviation)</td>
<td>3.1(±1.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
oceanographic settings that dictate the abundance and availability of prey. Furthermore, future studies that aim to further refine the isotopic enrichment associated with nursing in otariids should attempt to compare isotope values of otariid milk with those of maternal diets under controlled captive conditions, and characterize the isotope composition of tissues that are relatively easy to collect during the course of field-based studies on wild populations.

Conclusions

- The switch in trophic level and lipid-content of diet associated with weaning in otariids can be traced via nitrogen, and sometimes carbon, isotope values in ontogenetic series of bone collagen and tooth dentin.
- For *Callorhinus*, bone collagen δ¹⁵N values provide the best estimate of weaning age because high-resolution bone regressions have been generated for several elements, allowing for sub-annual age control. For *Callorhinus* from the Pribilof Islands, bone collagen δ¹³C values do not record the switch in lipid-content of diet associated with weaning.
- For *Zalophus*, tooth dentin δ¹⁵N and δ¹³C values provide an estimate of weaning age at an annual resolution since no high-resolution bone regressions currently exist for this species. Both carbon and nitrogen isotope values of bone collagen, however, can be used to approximate weaning age in *Zalophus* after consideration of appropriate bone collagen turnover rates.
- For *Callorhinus* young-of-the-year, bone collagen turnover occurs on the order of ~8 mo. Because *Zalophus* weans at an older age (~10–14 mo), when growth rates are relatively slower, bone collagen turnover occurs on the order of 10–12 mo.
- When coupled with sub-annual age estimates based on morphological measurements, bone collagen δ¹⁵N values can be used to determine the length of the nursing period, or approximate age at weaning, in otariids. Ultimately, this technique can be used to assess intra- and inter-specific age at weaning across breeding ranges or to identify changes in maternal strategies through time by analyzing bone elements found in archaeological and/or paleontological sites.

ACKNOWLEDGMENTS

Access and assistance to *Callorhinus* specimens was aided by B. DeLong, D. DeMaster, and Jim Thomason (NMML); Douglas Long (California Academy of Sciences); Jim Mead, Charley Potter, and Dee Allen (Smithsonian). We would also like to thank Sam Chamberlain for assistance with the Merchantek micromill. This research was funded through the National Science Foundation (EAR-0000895), student research grants from the Myers Trust and Long Marine Laboratory, CEGEPI Instituto Politecnico Nacional (#20020364 and #20030304), project 1230-A1 provided by the SEMERNAT-CONACYT, and a sabbatical grant from UC-Mexus-CONACYT to the third author during 2003–2004 at the UCSC Institute of Marine Sciences. Research was conducted under permits 240996-03, DOO-750-4172/97, DOO-750-4443/98, and DOO.02-0291, granted by Dirección de Vida Silvestre, Instituto Nacional de Ecología, Secretaría de Medio Ambiente y Recursos Naturales.

LITERATURE CITED

Received: 14 June 2005
Accepted: 7 November 2005