Viewpoint:

Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C$_3$ plants? Review and synthesis of current hypotheses

ACharles Darwin University, School of Environmental and Life Sciences, Darwin, NT 0909, Australia.
BPlateforme Métabolisme-Metabolome IFR87, Batiment 630, IBP CNRS UMR8618, Université Paris-Sud XI, 91405 Orsay cedex, France.
CEnvironmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia.
DBiodiversity Research Group, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
EDepartment of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA.
FInstitute of Plant Sciences, ETH Zurich, Zurich 8092, Switzerland.
GLandcare Research, PO Box 40, Gerald Street, Lincoln 7640, New Zealand.
HDepartment of Renewable Resources, University of Wyoming, Laramie, WY 82071, USA.
IDepartment of Forest Resources, University of Minnesota, St Paul, MN 55108, USA.
JCenter for Plant and Food Sciences, University of Western Sydney, Penrith, NSW 1797, Australia.
KDepartment of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
LDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
MDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
NCorresponding author. Email: lucas.cernusak@cdu.edu.au

Abstract. Non-photosynthetic, or heterotrophic, tissues in C$_3$ plants tend to be enriched in 13C compared with the leaves that supply them with photosynthate. This isotopic pattern has been observed for woody stems, roots, seeds and fruits, emerging leaves, and parasitic plants incapable of net CO$_2$ fixation. Unlike in C$_3$ plants, roots of herbaceous C$_4$ plants are generally not 13C-enriched compared with leaves. We review six hypotheses aimed at explaining this isotopic pattern in C$_3$ plants: (1) variation in biochemical composition of heterotrophic tissues compared with leaves; (2) seasonal separation of growth of leaves and heterotrophic tissues, with corresponding variation in photosynthetic discrimination against 13C; (3) differential use of day v. night sucrose between leaves and sink tissues, with day sucrose being relatively 13C-depleted and night sucrose 13C-enriched; (4) isotopic fractionation during dark respiration; (5) carbon fixation by PEP carboxylase; and (6) developmental variation in photosynthetic discrimination against 13C during leaf expansion. Although hypotheses (1) and (2) may contribute to the general pattern, they cannot explain all observations. Some evidence exists in support of hypotheses (3) through to (6), although for hypothesis (6) it is largely circumstantial. Hypothesis (3) provides a promising avenue for future research. Direct tests of these hypotheses should be carried out to provide insight into the mechanisms causing within-plant variation in carbon isotope composition.

Additional keywords: diel cycle, heterotrophic tissue, PEP-carboxylase, refixation, respiration.

Introduction

Seventy years have passed since the first report of significant variation in nature of the relative abundance of the stable carbon isotopes, 12C and 13C (Nier and Gulbransen 1939). Such variation was subsequently reported to exist among plant taxa, and among plants growing in different environments (Wickman 1952). In the time since these early reports, analysis of stable carbon isotope ratios has provided many valuable insights into plant physiology. One of the first applications of 13C/12C measurements in this context was to aid identification of species using different photosynthetic pathways (C$_3$, C$_4$, and crassulacean acid metabolism) (Bender 1968). It is now well established that the 13C/12C ratio of organic
material in plants using the C₃ photosynthetic pathway records information about the intercellular CO₂ concentration during photosynthesis (Farquhar et al. 1982). More recently, 13C/12C ratios in terrestrial plants and atmospheric CO₂ have been used to constrain carbon cycle models at both ecosystem (e.g. Lloyd et al. 1996) and global scales (e.g. Francey et al. 1995). Numerous other applications have been developed, and carbon isotope analysis is rapidly becoming a standard tool in environmental plant science.

Carbon isotope ratios are expressed relative to an international standard, using delta notation:

$$
\delta_{\text{Sample}} = \frac{R_{\text{Sample}} - R_{\text{Std}}}{R_{\text{Std}}} \times 1000
$$

where δ_{Sample} is defined by this relationship, R_{Sample} is the 13C/12C ratio of the sample, and R_{Std} is the 13C/12C ratio of the standard. The δ_{Sample} is typically multiplied by 1000 to avoid working with very small numbers; it is, thus, expressed as parts per thousand (%). The internationally accepted standard against which delta values are expressed is CO₂ prepared from a Cretaceous belemnite from the PeeDee formation in South Carolina, USA. This standard was reported to have a 13C/12C ratio of 0.0112372 (Craig 1957), and is referred to as DDB.

Despite tremendous progress over the past few decades in understanding what causes variation in carbon isotope ratios of terrestrial plants (Dawson et al. 2002), there are patterns in nature for which the proposed physiological mechanisms have been little tested. One such pattern is the tendency for heterotrophic, or non-photosynthetic, plant tissues to be enriched in 13C compared with the leaves that supply them with photosynthate. This pattern was first reported by Craig (1953), who observed that the branch wood of several tree species was enriched in 13C compared with leaves. A paired t-test of Craig’s data shows that the mean δ^{13}C of branch wood, at -25.8%e, was significantly less negative than that of leaves, at -26.8%e ($P < 0.01$, n = 7). The observation that branch or stem wood is generally enriched by between 1 and 3%e compared with leaves of the same branch or tree has been repeated many times and for many species since Craig’s initial observation (e.g. Leavitt and Long 1982, 1986; Francey et al. 1985; Schleser 1992; Yoder et al. 1994; Panek and Waring 1997; Guehl et al. 1998; Martinelli et al. 1998; Pate and Arthur 1998; Miller et al. 2001; Cernusak et al. 2005). In a compilation of published data for 116 observations of δ^{13}C in leaves and woody stems, Badeck et al. (2005) calculated that woody stems were on average enriched in 13C by 1.9%e compared with leaves.

Figure 1 shows an example of δ^{13}C values for branch wood and leaves distal to that section of branch for two temperate tree species sampled in Idaho, USA. Samples were collected at varying heights in the crowns, such that there was a gradient from less negative δ^{13}C at the tops of the crowns, to more negative δ^{13}C at the bases of the crowns. These data demonstrate two points: first, that the branch wood in both species is enriched in 13C compared with leaves of the same branch; and second, that the magnitude of the leaf-wood δ^{13}C difference can vary with crown depth, but appears to do so in a species-specific way. Thus, for Populus tremuloides Michx., a deciduous angiosperm tree, the δ^{13}C difference between leaves and branch wood was largest at the top of the crown and smallest at the base. In contrast, Pinus monticola Doug., an evergreen conifer, showed little variation in the δ^{13}C difference between leaves and wood with relative crown depth (Fig. 1).

Similar to woody stems, roots also tend to be enriched in 13C compared with leaves in C₃ plants (e.g. Park and Epstein 1960; Gebauer and Schulze 1991; Handley et al. 1993; Ineson et al. 1995; Syvertsen et al. 1997; Scratzaza et al. 1998; Brugolini and Farquhar 2000; Hobbie and Colpaert 2004). In their compilation of published data, including 78 observations in C₃ plants, Badeck et al. (2005) observed that roots were enriched in 13C compared with leaves by an average of 1.1%e. Figure 2 shows δ^{13}C of leaves, stems, and roots for seedlings of seven C₃ tropical tree species (Cernusak et al. 2007). These data again demonstrate that the δ^{13}C of stems and roots tends to be enriched compared with that of leaves, and that the extent of enrichment varies among species.

Further, roots in C₄ plants tend to show similar or slightly depleted δ^{13}C compared with leaves of the same plant (Hobbie and Werner 2004). For example, the two tissues showed an average difference of only 0.1%e for 10 observations (Badeck et al. 2005). In the experiment for which data are shown in Fig. 2, Saccharum spontaneum L., a C₄ grass, was grown along-side seedlings of seven C₃ tree species (Cernusak et al. 2007). In that experiment, root dry matter of the C₄ grass was depleted, rather than enriched, in 13C compared with leaves of the same plant ($P < 0.01$, n = 7); mean root δ^{13}C was -11.8%e and mean leaf δ^{13}C was -10.6%e.

In addition to stems and roots, seeds and fruits also tend to be 13C enriched compared with leaves in C₃ plants (e.g. Yoneyama and Ohtani 1983; Farquhar and Richards 1984; Scratzaza et al. 1998; Yoneyama et al. 1998, 2000; Barbour et al. 2000;
13C enrichment in heterotrophic plant tissues

Behboudian et al. 2000; Brugnoli and Farquhar 2000; Cernusak et al. 2002). Few data are available for seeds and fruits for comparison in C4 plants; however, it would appear that corn kernels are typically enriched by ~1.5‰ compared with corn leaves (Lowdon 1969; Gleixner et al. 1993).

Holoparasitic plants, which are heterotrophic plants that derive their carbon parasitically from a photosynthetic host plant, tend to be enriched by between 1.0 and 1.5‰ compared with leaves of their hosts for parasitic angiosperms (e.g. de la Harpe et al. 1981; Ziegler 1994; Cernusak et al. 2004b). The only known parasitic gymnosperm (Parasitaxus ustus (Vieill.) de Laub.) is also enriched in 13C compared with leaves of its host, although the mechanism of enrichment may differ from that of parasitic angiosperms (Feild and Brodribb 2005).

Finally, young, emerging leaves of C3 plants, for which growth may be mostly heterotrophic, tend to be 13C-enriched compared with fully-expanded leaves (e.g. Lowdon and Dyck 1974; Leavitt and Long 1985; Terwilliger 1997; Damesin et al. 1998; Le Roux-Swarthout et al. 2001b; Terwilliger et al. 2001; Damesin and Lelarge 2003; Holtum and Winter 2005; Li et al. 2007). No data of this type are available for C4 plants.

A mechanistic understanding of variation in δ13C between leaves and non-photosynthetic tissues in C3 plants would be useful for several applications. For example, measurements of leaf dry matter δ13C are often employed in ecophysiological, agricultural, and silvicultural investigations to indicate variation in the ratio of intercellular to ambient CO2 partial pressures, p\textsubscript{i}/p\textsubscript{a}, during photosynthesis. The p\textsubscript{i}/p\textsubscript{a} in turn correlates with plant water-use efficiency, assuming similar leaf-to-air vapour pressure difference and respiratory carbon use among experimental plants (Farquhar and Richards 1984; Seibt et al. 2008). Assuming p\textsubscript{a} is known or can be estimated, p\textsubscript{i} can be calculated, and the resulting value employed in analyses aimed at predicting optimal stomatal control in relation to leaf area and nitrogen content (Farquhar et al. 2002; Wright et al. 2003). For both of these applications, it is important to know whether the leaf δ13C signal or that of heterotrophic tissues provides a better representation of p\textsubscript{i}/p\textsubscript{a} during photosynthesis. Additionally, any systematic 13C fractionation between leaves and heterotrophic tissues should be included in ecosystem and global carbon cycle models if δ13C measurements are to be used to constrain carbon fluxes (Bowling et al. 2008). Studies of carbon flow through food webs based on δ13C analyses would also benefit from taking into account systematic δ13C differences between leaves and heterotrophic tissues, as would tree ring-based studies of historical variation in carbon isotope discrimination (Gessler et al. 2008). However, without mechanistic information about what causes δ13C divergence between leaves and heterotrophic tissues, it is difficult to incorporate such a process effectively into any modelling framework.

To summarise, 13C enrichment of heterotrophic tissues relative to leaves is a widespread phenomenon in C3 plants. The extent of enrichment can vary depending on tissue, species, and possibly environment. Further, C4 plants tend to show no enrichment, or even a depletion, of 13C in roots compared with leaves. Because C3 plants are responsible for ~80% of terrestrial net primary production (Still et al. 2003), an understanding of the 13C enrichment of heterotrophic tissues is important for δ13C applications at plant, ecosystem, and global scales.

In the following sections, we review various hypotheses proposed to explain the 13C enrichment of heterotrophic tissues,
and their supporting evidence. The hypotheses are summarised in Table 1. Figure 3 shows a simplified representation of carbon flow through a C₃ plant, and indicates the position in the flow network at which each hypothesis operates. It should be noted at the outset that these hypotheses are not mutually exclusive, and there may be multiple mechanisms that contribute to the general tendency for heterotrophic tissues to be 13C-enriched compared with leaves. Our intention is that this review should complement other recent reviews relating to this topic (Hobbie and Werner 2004; Badeck et al. 2005; Bowling et al. 2008) by providing a framework of multiple working hypotheses that can be used to direct new experimental work aimed at unravelling the physiological mechanisms underlying heterotrophic 13C enrichment.

We include here two hypotheses that were not covered in the earlier reviews [hypotheses (3) and (6) below]. To set the context for the description of the hypotheses, we begin by briefly reviewing photosynthetic fractionation of carbon isotopes in C₃ and C₄ plants.

Carbon isotope discrimination during photosynthesis

Several authors have developed models to describe carbon isotope fractionation during C₃ photosynthesis (Vogel 1980; O’Leary 1981; Farquhar et al. 1982). The most widely applied of these defines discrimination against 13C (Δ) as follows (Farquhar et al. 1982; Farquhar and Richards 1984; Hubick et al. 1986):

\[
\Delta = a - d + (b - a) \frac{p}{p_a},
\]

(2)

Table 1. Summary of the six hypotheses proposed to explain 13C enrichment of heterotrophic tissues compared with leaves

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Description</th>
<th>Evidence in favour</th>
<th>Evidence opposed</th>
<th>Testable prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Variation in biochemical constituents between leaves and heterotrophic tissues accounts for 13C differences</td>
<td>Different biochemical fractions show consistent offsets in δ13C (e.g. cellulose is 13C-enriched, lignin is 13C-depleted)</td>
<td>A single constituent, cellulose, showed 13C differences between organs</td>
<td>Leaves have larger concentrations of compounds relatively depleted in 13C than heterotrophic tissues, or vice versa</td>
</tr>
<tr>
<td>2</td>
<td>Seasonal separation of growth of leaves v. heterotrophic tissues is associated with shifts in 13C discrimination of photosynthesis</td>
<td>In many ecosystems leaf, stem, and root growth occur at different times and under different environmental conditions</td>
<td>In experiments with simultaneous leaf, stem, and root growth, associated 13C variations were still observed</td>
<td>New leaves and heterotrophic tissues faithfully record the 13C of carbon delivered to them in phloem sap, and phloem sap 13C faithfully reflects photosynthetic 13C discrimination</td>
</tr>
<tr>
<td>3</td>
<td>Diel variation in 13C of growth substrate (sucrose) is coupled to diel patterns in growth rate; sucrose is 13C-enriched at night and 13C-depleted during the day</td>
<td>Diel variation in 13C of phloem sap sucrose was observed; contrasting diel growth patterns between leaves and heterotrophic tissues were also observed</td>
<td>Species that apparently do not show contrasting diel patterns in growth between leaves and heterotrophic tissues still show 13C differences between organs</td>
<td>(1) Blocking export of carbon from a leaf increases leaf 13C at a given photosynthetic 13C discrimination; (2) non-starch-producing plants show no 13C difference between leaves and heterotrophic tissues</td>
</tr>
<tr>
<td>4</td>
<td>Fractionation during dark respiration causes 13C depletion of leaves and/or 13C enrichment of heterotrophic tissues</td>
<td>Dark respired CO₂ in leaves is typically 13C-enriched compared with leaf organic material, and root respired CO₂ tends to be 13C-depleted</td>
<td>Dark respiration from woody tissues also tends to be 13C-enriched compared with organic material</td>
<td>Environmental or genetic variation altering the 13C difference between respiratory CO₂ and organic material alters the 13C difference between leaves and heterotrophic tissues</td>
</tr>
<tr>
<td>5</td>
<td>Heterotrophic tissues have a proportionally larger production and retention of PEP carboxylase-derived organic molecules than leaves</td>
<td>Carbon fixed by PEP carboxylase is 13C-enriched compared with source CO₂; PEP carboxylase activity was higher in heterotrophic tissues than in leaves</td>
<td>Some sink tissues have shown similar 13C to carbon delivered to them in phloem sap, suggesting a modest input from PEP carboxylase</td>
<td>Fluxome analyses suggest that PEP carboxylase-derived compounds make a larger contribution to biosynthetic processes in heterotrophic tissues than in leaves</td>
</tr>
<tr>
<td>6</td>
<td>Developmental variation in photosynthetic discrimination against 13C results in accumulation of 13C-depleted organic material during expansion of young leaves</td>
<td>Higher values of p/p₀ were observed in expanding leaves compared with mature leaves</td>
<td>Evidence also suggests a 13C enriching mechanism in roots</td>
<td>Photosynthetic discrimination against 13C is higher in expanding than mature leaves, and the amount of carbon fixed under elevated discrimination is sufficient to affect 13C of total leaf carbon</td>
</tr>
</tbody>
</table>
where a is the discrimination against 13C during diffusion of CO$_2$ through stomatal pores (4.4‰), b is the discrimination against 13C associated with carboxylation by Rubisco (~29‰), p_i/p_a is the ratio of intercellular to ambient CO$_2$ partial pressures, and d is a composite term that takes into account discriminations associated with CO$_2$ transfer in the boundary layer, dissolution of CO$_2$ and liquid-phase diffusion, photorespiration, and dark respiration (Farquhar et al. 1989). In some applications, the term d is omitted from Eqn (2), in which case a lower value for b is typically employed (~27‰) to account for the decrease in D associated with the various fractionation processes summarised by d. The discrimination, Δ, is defined with respect to CO$_2$ in air as

$$\Delta = \frac{R_a - R_p}{R_p},$$ \hspace{1cm} (3)

where R_a is the 13C/12C ratio of CO$_2$ in air, and R_p is that of carbon taken up by the plant during photosynthesis. The capital delta (Δ) in Eqn (3) relates to the lower case delta in Eqn (1) as

$$\Delta = \frac{\delta_a - \delta_p}{1 + \delta_p},$$ \hspace{1cm} (4)

where δ_a is the 13C of CO$_2$ in air, and δ_p is that of carbon taken up by the plant during photosynthesis.

Several models have also been proposed to describe D during C$_4$ photosynthesis (Reibach and Benedict 1977; Hattersley 1982; Peisker 1982; Deléens et al. 1983; Farquhar 1983; Peisker and Henderson 1992). We review here the expression derived by Farquhar (1983):

$$\Delta = a + (b_4 + b_3\phi - s\phi - a)\frac{p_i}{p_a},$$ \hspace{1cm} (5)

where b_4 and b_3 are fractionations associated with carboxylation by phosphoenolpyruvate (PEP) carboxylase (~5.7‰) and Rubisco (~29‰), respectively, ϕ is the proportion of CO$_2$ released by decarboxylation that subsequently leaks out of the bundle sheath, and s is the fractionation associated with this leakage, which may be near 1.8‰ (Farquhar 1983; Henderson et al. 1992). This Δ model for C$_4$ photosynthesis is also simplified, in that fractionations caused by CO$_2$ transfer in the boundary layer and between the intercellular air spaces and the mesophyll cells have been omitted (Farquhar 1983).

The different processes of C$_3$ and C$_4$ photosynthesis, thus, have differing discriminations against 13C associated with them. This results in large differences in δ^{13}C of organic material associated with C$_3$ and C$_4$ plants when grown under conditions of similar δ_a. This provided the original basis for using δ^{13}C measurements to identify C$_4$ v. C$_3$ plants. In addition to the large difference in Δ between C$_3$ and C$_4$ plants, the two also

Fig. 3. A simplified representation of carbon flow through a C$_3$ plant. The abbreviations H1 through H6 refer to hypotheses (1) through (6), described briefly below, and in more detail in Table 1 and in the text. These hypotheses aim to provide a mechanistic explanation for why heterotrophic plant tissues tend to be 13C-enriched compared with leaves. The position of each abbreviation shows where in the carbon flow pathway each hypothetical mechanism operates. Hypothesis summaries are as follows: H1, variable biochemical composition; H2, seasonal separation of growth; H3, day v. night sucrose utilisation; H4, respiratory fractionation; H5, carbon fixation by PEP carboxylase; and H6, developmental variation in photosynthetic discrimination against 13C.

13C enrichment in heterotrophic plant tissues

Functional Plant Biology 203
show very different dependencies of Δ on p_i/p_o. For C$_3$ photosynthesis, the $\Delta = p_i/p_o$ relationship typically has a slope ranging from ~20 to 25‰, indicating an increase in Δ of 2.0% to 2.5‰ for each 0.1 increase in p_i/p_o. If Eqn (2) is fitted to experimental data (without d), this corresponds to predicted b values ranging from ~24 to 29‰ (Farquhar et al. 1989; Brugnoli and Farquhar 2000). In contrast, the Δ for C$_4$ plants typically shows a weakly negative relationship with p_i/p_o, with slopes ranging from ~0 to ~5‰, indicating a decrease in Δ of 0.0 to 0.5‰ for each 0.1 increase in p_i/p_o (Farquhar et al. 1989; Brugnoli and Farquhar 2000).

Hypotheses to explain 13C enrichment in heterotrophic tissues

Hypothesis 1: Variation in biochemical composition

One possible explanation for the widespread difference in 13C between leaves and heterotrophic tissues of the same plant is that the two differ in biochemical composition (Table 1; Fig. 3). Different biosynthetic pathways can result in variation in the carbon isotope composition of their respective end products (Gleixner and Schmidt 1997; Hobbie and Werner 2004). As a result, some biochemical constituents of plant dry matter show consistent offsets in 13C. For example, lipids (Park and Epstein 1961) and lignin (Wilson and Grinsted 1977) are generally depleted in 13C compared with whole organic material by 3 to 8‰, and 1 to 4‰, respectively; however, cellulose tends to be enriched in 13C compared with whole organic material by 1 to 2‰ (Olsson et al. 1972; Leavitt and Long 1982; Badeck et al. 2005). Thus, if leaves and non-photosynthetic organs differed consistently in their biochemical composition, this might explain the widespread difference in 13C of whole tissues.

This hypothesis is based on two parts: first, that individual biochemical constituents, such as lignin and cellulose for example, maintain the same isotopic composition across different tissue types; and second, that the relative amounts of these isotopically distinct constituents vary among tissue types. For example, this hypothesis would be supported if lignin from both leaves and roots had the same 13C, which was in turn isotopically depleted compared with whole tissue, and leaves had a larger concentration of lignin than roots. Thus, one test of this hypothesis is to analyse 13C of a single biochemical constituent of both leaves and heterotrophic tissues. Such analyses have most commonly focussed on cellulose, a primary constituent of plant organic material. Leavitt and Long (1982) analysed 13C of cellulose extracted from both leaves and wood of juniper trees, and found that the leaf/wood 13C difference for cellulose generally mirrored that observed for whole tissues. Similar results have been observed for cellulose in leaves and wood of other tree species (Francey et al. 1985; Panek and Waring 1997; Guehl et al. 1998), and for cellulose in emerging v. fully-expanded leaves (Terwilliger et al. 2001).

Thus, available evidence does not support the first part of this hypothesis, because the observations cited above demonstrate a divergence in 13C between leaves and non-photosynthetic organs for a single biochemical constituent. Whereas variation in biochemical composition of different tissues can potentially result in 13C differences, the observation that a single biochemical constituent differs consistently in 13C between leaves and heterotrophic tissues suggests that there is an additional process or processes at work. Furthermore, Badeck et al. (2005) noted that variation in 13C among biochemical constituents in and of itself cannot cause divergence of whole-tissue 13C, so long as total mass is conserved for each tissue. For example, if a particular biochemical component is 13C-depleted due to 13C/12C fractionating steps associated with its biosynthetic pathway, there will necessarily be a simultaneous 13C enrichment of the other compounds derived from the precursor molecules. Thus, a net addition or loss of carbon with 13C different from the average for the whole tissue must occur in order for variation in whole-tissue 13C to be associated with variation in biochemical composition. We note, however, that such addition or loss need not necessarily occur as a result of carboxylating or decarboxylating reactions. Many other processes could potentially cause selective loss or addition of compounds with 13C different from the whole-tissue mean. Some examples are fine root turnover, litter fall, abrasion of leaf waxes, organic acid efflux from roots, emission of volatile organic compounds, sugar secretions from extra-floral nectaries, and uptake of amino acids from the soil.

Hypothesis 2: Seasonal separation of growth

A second possible explanation for the widespread enrichment of 13C in heterotrophic tissues compared with leaves is that carbon used for synthesis of the two takes place at different times during the growing season, with corresponding differences in photosynthetic discrimination against 13C (Table 1; Fig. 3). According to this hypothesis, growth of heterotrophic tissues in C$_3$ plants would take place at a time of lesser photosynthetic discrimination against 13C than growth of new leaves; the variation in Δ would result from environmental constraints on p_i/p_o, such as increased soil water deficit or atmospheric vapour pressure deficit. Examples of such a pattern would be for seasonally ephemeral plant communities (Smedley et al. 1991) or cereal crops in temperate climates, where vegetative growth would take place in the spring, and storage organ or grain filling would take place later in the summer while soil moisture reserves were being exhausted. The Δ during vegetative growth would then be higher than during storage organ or grain filling phases due to the seasonal progression of drought stress.

There is some circumstantial support for this hypothesis for plants growing in seasonal environments. For example, seeds of Lupinus angustifolius L. plants growing in south-western Australia were observed to be 13C-enriched by ~3‰ compared with leaves; however, the seed 13C closely matched that of phloem sap carbon sampled concurrently (Cernusak et al. 2002). This suggested that the seeds were faithfully recording the carbon isotope ratio of carbon delivered to them in phloem sap in the later stages of the growing season. A similar situation was observed for plantations of Eucalyptus globulus Labill, also growing in south-western Australia. Seasonal variations of ~4‰ were observed in the 13C of newly formed stem-wood dry matter. However, these variations could be entirely accounted for by considering corresponding variations in the 13C of phloem sap carbon delivered to the growing stems (Pate and Arthur 1998; Cernusak et al. 2005), and variation in 13C of phloem sap carbon was observed to correlate with variation in p_i/p_o of...
Hypothesis 3: Day v. night translocation
Tcherkez et al. (2004) and Gessler et al. (2008) have offered a third hypothesis to explain δ13C enrichment of heterotrophic plant tissues compared with leaves (Table 1; Fig. 3). The authors posit that a diel rhythm in leaf carbohydrate dynamics results in an isotopic partitioning between carbohydrate that is consumed within the leaf and that which is exported to sink organs, with the latter being preferentially associated with transitory starch degradation. Tcherkez et al. (2004) predicted a diel cycle in the δ13C of phloem sap sucrose, in which carbohydrate exported during the night would be 13C-enriched compared with that exported during the day. Such a diel oscillation would result from alternation between night-time export associated with transitory starch breakdown, producing sucrose relatively enriched in 13C, and daytime export associated with sucrose biosynthesis from triose phosphates, producing sucrose relatively depleted in 13C. Experimental results for Ricinus communis L. support the prediction of a day/night cycle (Gessler et al. 2008), as do observations of diel variation in δ13C of twig phloem sap sucrose in Pinus sylvestris L. (Brandes et al. 2006) and Eucalyptus delegatensis R.T. Baker (Gessler et al. 2007). This diel cycle may cause divergence between δ13C of leaves and heterotrophic tissues if sucrose consumption for growth within organs occurs preferentially during the day or night.

Growth processes can also be associated with diel cycles. In several C3 species, leaf growth was primarily observed during the day (Walter and Schurr 2005), and, thus, may preferentially use relatively 13C-depleted daytime sucrose. In contrast, roots do not show a diel growth cycle (Walter and Schurr 2005), and therefore may incorporate carbon that is relatively 13C-enriched compared with that incorporated by leaves. It has been postulated that woody stem growth occurs mostly at night (Steppe et al. 2005; Saveyn et al. 2007), and it would, therefore, preferentially consume starch-derived sucrose. As a consequence, wood is expected to be 13C-enriched.

Several recent reports have demonstrated depletion in the δ13C of soluble sugars extracted from leaves compared with those extracted from stem tissues. For current year stems of Fagus sylvatica L., sucrose extracted from mature leaves had a δ13C ~2‰ more negative than sucrose extracted from stem tissue, suggesting δ13C enrichment of exported sucrose relative to leaf sucrose (Damesin and Lelarge 2003). Similarly, δ13C of sucrose extracted from potato leaves was observed to be ~2‰ more negative than sucrose extracted from tubers (Gleixner et al. 1998). Similar offsets in δ13C of leaf soluble sugars compared with stem phloem sap sugars were also observed in Fagus sylvatica (Scartazzia et al. 2004), Pinus sylvestris (Brandes et al. 2006), and Eucalyptus delegatensis (Gessler et al. 2007). These reports would be consistent with the day/night hypothesis if leaves were sampled during the day, such that sucrose extracted from leaves mainly represented that originating from triose phosphates, whereas sucrose extracted from stem phloem sap or heterotrophic tissues represented a mixture of that originating from both day and night export from leaves.

The translocation of carbohydrate from leaves to heterotrophic tissues may be associated with further fractionating processes, in addition to those associated with day/night effects. For example, a gradient of 13C-enrichment from twig phloem sap to stem phloem sap was observed in Fagus sylvatica (Gessler et al. 2004) and Pinus sylvestris (Brandes et al. 2006). This enrichment was postulated to result from leakage of sucrose out of the phloem, and subsequent partial retrieval of a 13C-enriched fraction (Gessler et al. 2007). Root soluble sugars were observed to be 13C-enriched compared with soluble sugars in the stem in Phaseolus vulgaris L. (Badeck et al. 2005), whereas root soluble sugars were 13C-depleted compared with phloem sap organic material in Eucalyptus delegatensis (Gessler et al. 2007). Thus, a complex phloem-trafficking pathway, which may differ among species, could further lead to variability in relative 13C enrichment among sink organs. However, δ13C of sucrose collected from petiole phloem sap did not differ significantly from that of leaves in Phaseolus vulgaris (Badeck et al. 2005). This latter result suggests that phloem loading, in and by itself, is not likely to be a fractionating process. Further research is necessary to identify potentially fractionating processes associated with the transfer of carbohydrates from source leaves to sink organs, and to elucidate how these processes may vary within and among species.

Hypothesis 4: Fractionation during respiration
A fourth hypothesis to explain δ13C enrichment in heterotrophic tissues relative to leaves is that respiratory processes cause divergence in δ13C of the two tissues (Table 1; Fig. 3). This hypothesis would require either that leaves release CO2 during respiration that is 13C-enriched, thereby leaving behind 13C-depleted carbon to be incorporated into leaf biomass, and/or that heterotrophic tissues release 13C-depleted CO2, thereby leaving behind 13C-enriched carbon to be incorporated into their biomass.

Study of the carbon isotope composition of plant respiration is currently an active area of research. Thus far, and consistent with this hypothesis, results have suggested that dark-respired CO2 is generally 13C-enriched relative to whole tissues and/or respiratory substrates in leaves (Durant et al. 1999; Cernusak and Marshall 2001; Duranteau et al. 2001; Ghashghaie et al. 2001, 2003; Tcherkez et al. 2003; Ocheltree and Marshall 2004; Xu et al. 2004; Hymus et al. 2005; Prater et al.
206 Functional Plant Biology

L. A. Cernusak et al.

In addition, it was recently shown that CO₂ evolved in darkness just after illumination was ¹³C-enriched by more than 10‰ compared with organic material (Barbour et al. 2007). This peak in ¹³C enrichment of leaf-respired CO₂ was assumed to be associated with the decarboxylation of organic acids, like malate, in a process known as light-enhanced dark respiration (LEDR) (Atkin et al. 2000). Malate has been shown to be relatively enriched in ¹³C (Melzer and O’Leary 1987). Accordingly, in Ricinus communis, both the amount and the ¹³C enrichment of CO₂ evolved during LEDR correlated closely with malate decarboxylation (Gessler et al. 2009). After the end of the post-illumination respiratory peak, when the respiration rate has stabilised and the Krebs cycle is fully activated, fragmentation fractionation is thought to occur during CO₂ release by pyruvate dehydrogenase. This leaves behind ¹³C-depleted acetyl-coA that can be incorporated into fatty acids, known to be depleted in ¹³C compared with sugars, or enter the TCA cycle (Ghashghaie et al. 2003). These results tend to support the suggestion that dark respiration in leaves causes a relative depletion in ¹³C of residual leaf organic material.

Some recent reports have also provided results for roots consistent with the respiration hypothesis. For three species of herbaceous plants, CO₂ respired in the dark by shoots was significantly enriched in ¹³C compared with the respiratory substrate pool, whereas CO₂ respired by roots showed no enrichment (Klumpp et al. 2005); the difference between ¹³C of shoot- and root-respired CO₂ was sufficient to explain observed differences of 0.8 to 1.6‰ in whole-tissue ¹³C between roots and shoots. Thus, in this dataset, respiratory fractionation of carbon isotopes caused an apparent depletion of ¹³C in leaf tissue, but not in root tissue. A similarly consistent result was recently observed for another herbaceous species, P. vulgaris, where ¹³C signatures for dark-respired CO₂ diverged between leaves and roots in 10-day-old plants, causing the characteristic ¹³C enrichment of ~1‰ in root organic material relative to that of leaves (Bathellier et al. 2008). This pattern agreed with results presented previously for this species, in which root-respired CO₂ was ¹³C-depleted when compared with root carbohydrates or total root organic material (Badeck et al. 2005). This also agrees with an analysis of metabolic fluxes, showing the larger prevalence of the pentose phosphate pathway, expected to produce ¹³C-depleted CO₂ in roots as compared with leaves (Bathellier et al. 2009).

In contrast to the above cited reports, observations of respired CO₂ from woody tissues appear not to be consistent with the respiratory fractionation hypothesis. In woody tissues, dark-respired CO₂ was observed to be ¹³C-enriched relative to whole tissues and/or respiratory substrates (Cernusak et al. 2001; Damesin and Lelarge 2003; Damesin et al. 2005; Brandes et al. 2006; Gessler et al. 2007; Maunoury et al. 2007), such that respiration in these tissues would cause a relative depletion of ¹³C in residual organic material, rather than the characteristic enrichment. Thus, the basis on currently available results, it is difficult to draw a generalised conclusion about the impact of respiration on δ¹³C divergence between leaves and heterotrophic tissues, especially with regard to woody stem tissues. Careful quantification and comparison of the magnitude of ¹³C enrichment of dark-respired CO₂ in leaves and woody tissues is necessary to determine what contribution, if any, the respiratory process makes to their characteristic δ¹³C divergence.

Hypothesis 5: Carbon fixation by PEP carboxylase in heterotrophic tissues

As noted earlier, PEP carboxylase, the enzyme that catalyses addition of HCO₃⁻ to PEP, shows a discrimination relative to gaseous CO₂ of about ~5.7‰, such that carbon fixation by this enzyme would be expected to result in the addition of ¹³C-enriched organic material in C₃ plants. Thus, a fifth hypothesis to explain ¹³C enrichment of heterotrophic tissues relative to leaves in C₃ plants is that PEP carboxylase fixes HCO₃⁻ at a greater rate in heterotrophic tissues than in leaves, thus causing ¹³C enrichment of organic material in heterotrophic tissues (Table 1; Fig. 3). Several authors have favoured this hypothesis (Terwilliger and Huang 1996; Le Roux-Swarthout et al. 2000, 2001a; Terwilliger et al. 2001; Badeck et al. 2005).

In plants, PEP carboxylase activity contributes to biosynthetic functions of the TCA cycle. The TCA cycle is an important component of aerobic respiration in all eukaryotic cells. In plants, however, the TCA cycle also provides carbon skeletons for biosynthesis of organic acids and proteins. When TCA cycle intermediates are removed for biosynthetic reactions, for example during the conversion of inorganic nitrogen to glutamate, they must be replaced to ensure continued functioning of the TCA cycle. The enzyme PEP carboxylase functions to replenish the supply of TCA cycle intermediates by converting PEP to oxaloacetate, which can in turn be converted to malate. Malate can then enter the mitochondrion, where it subsequently becomes available for engagement in the TCA cycle. Such carbon fixation by PEP carboxylase has been termed anaplerotic carbon fixation, where anaplerotic is a word of Greek origin meaning ‘to fill up’. The term emphasises the important role of this carbon fixation pathway in replenishing the supply of intermediate molecules for biosynthetic reactions.

The activity of PEP carboxylase was recently observed to be several-fold higher in current-year stems than in leaves of adult Fagus sylvatica trees (Berveiller and Damesin 2008), and about twice as high in roots as in leaves of Ricinus communis (Gessler et al. 2009). Such results lend support to the PEP carboxylase hypothesis.

However, it is uncertain what proportion of PEP carboxylase-derived molecules are subsequently integrated within cell metabolism. Under the assumption of no subsequent decarboxylation of PEP carboxylase-derived products, PEP carboxylase activity would be expected to cause an increase in δ¹³C of total organic material. In contrast, if PEP carboxylase-derived molecules were subsequently decarboxylated, no net effect of such activity would be expected. For example, the latter case may occur when all of the oxaloacetate molecules synthesised by PEP carboxylase enter the TCA cycle as pyruvate and are consequently decarboxylated. However, this scenario is unlikely in roots that ordinarily show large concentrations of organic acids, such as malate. Inorganic carbon labelled with ¹⁴C that was supplied to roots and stems of tobacco and celery accumulated as insoluble organic compounds within vascular tissues of these heterotrophic organs (Hibberd and Quick 2002). Thus, it is possible that PEP carboxylase activity and assimilation
of respiratory CO\(_2\) from soil and plant tissue causes some \(^{13}\)C enrichment of root and stem organic material through addition of \(^{13}\)C-enriched organic acids that are then incorporated into cell metabolism and biosynthesis (Raven and Farquhar 1990; Badeck et al. 2005).

The potential influence of PEP carboxylase on \(\delta^{13}\)C of heterotrophic tissues can be illustrated by assuming that \(\sim 10\%\) of respired CO\(_2\) is re-fixed by PEP carboxylase. Under such conditions, and assuming no subsequent decarboxylation of PEP carboxylase-derived acids, a \(^{13}\)C-enrichment of near 0.5‰ would be expected in root organic material (Badeck et al. 2005). This calculation also assumes that the amount of carbon lost to respiration is equal to the amount of carbon incorporated into organic material. In the case of leaves, the synthesis of organic acids during the day may be compensated for by subsequent decarboxylation at the very beginning of the dark period, fueling the light-enhanced dark respiration rate, and thereby canceling the \(^{13}\)C-enriching effect of the previous PEP carboxylations (Barbour et al. 2007). In that way, differential activity of PEP carboxylase and subsequent decarboxylation of organic acids may contribute to \(\delta^{13}\)C divergence between leaves and heterotrophic tissues.

Hypothesis 6: Developmental variation in photosynthetic discrimination

A sixth hypothesis to explain \(^{13}\)C enrichment of heterotrophic tissues compared with leaves is that leaves undergo a developmental shift in \(\Delta\) during leaf expansion, such that young, expanding leaves fix carbon with a more negative \(\delta^{13}\)C than mature leaves responsible for carbon export to heterotrophic tissues (Table 1; Fig. 3). According to this hypothesis, new leaves would begin their lives completely dependent on carbon donated by mature, source leaves. As soon as the young leaf gained a degree of photosynthetic competency, it would begin to fix CO\(_2\), which would then be incorporated into its biomass as it continued to expand. However, CO\(_2\) fixation in the young leaf would proceed at a higher \(p_i/p_a\) than CO\(_2\) fixation in mature leaves, such that the young leaf would be adding carbon to its biomass at more negative \(\delta^{13}\)C than the carbon being imported from other leaves. As discussed previously, \(C_3\) photosynthesis shows a strong, linear dependence of \(\Delta\) on \(p_i/p_a\). This process would eventually manifest itself as a depletion of whole-tissue \(\delta^{13}\)C in the new leaf, once it had fully expanded, relative to carbon imported during leaf expansion, and relative to carbon that it would go on to export as a mature leaf. Francey et al. (1985) favoured this hypothesis for explaining an observed \(\delta^{13}\)C gradient from needle tip to first wood in branches of *Lagarostrobos franklinii* (Hook. F.) Quinn.

Ubierna Lopez and Marshall (2007) recently expanded upon this hypothesis to include not just net CO\(_2\) fixation by young leaves, but also refixation of respired CO\(_2\) before new leaves are capable of net CO\(_2\) fixation. They further argued that photosynthetic refixation of respired CO\(_2\) would continue following leaf maturity, whenever leaf irradiance was above zero but below the light compensation point for photosynthetic CO\(_2\) uptake. Cernusak et al. (2001) described equations to predict \(\Delta\) for photosynthetic refixation in woody tissues, based on Comstock’s (2001) generalised description of isotope fractionation in branched pathways. The model can be applied to refixation in young leaves displaying net CO\(_2\) efflux in the light:

\[
\Delta_{\text{Refix}} = \left(1 - \frac{P_g}{R_d}\right) \left(\frac{R_d}{R_d + (R_d - P_g) \frac{P_g}{P_i - P_a}}\right) \left(b - \frac{P_i}{P_i - P_a} - a - \Delta_D \frac{P_a}{P_i - P_a}\right),
\]

where \(R_d\) is day respiration (\(\mu\)mol CO\(_2\) m\(^{-2}\) s\(^{-1}\)), \(P_g\) is gross photosynthesis (\(\mu\)mol CO\(_2\) m\(^{-2}\) s\(^{-1}\)), \(P_i\) and \(P_a\) are atmospheric and intercellular CO\(_2\) partial pressures, respectively (\(\mubar\)), \(b\) is \(^{13}\)C discrimination by carboxylating enzymes (~29‰, assuming only Rubisco), \(a\) is \(^{13}\)C discrimination during diffusion through stomata (4.4‰), and \(\Delta_D\) is discrimination of day respiration with respect to atmospheric CO\(_2\). The \(\Delta_D\) can be calculated according to Eqn (2), assuming no fractionation during translocation of photosynthate from mature leaves to the refixing leaf, and no fractionation during day respiration. The term \(\Delta_{\text{Refix}}\) is defined as \(R_d/R_g - 1\), where \(R_d\) is \(^{13}\)C/\(^{12}\)C of refixed photosynthate (Cernusak et al. 2001). The \(\Delta_{\text{Refix}}\) can be defined in little delta terms as

\[
\Delta_{\text{Refix}} = \frac{\delta_D - \delta_p}{1 + \delta_p},
\]

where \(\delta_D\) is the \(\delta^{13}\)C of day respiration and \(\delta_p\) is the \(\delta^{13}\)C of refixed photosynthate.

Thus, \(\Delta_{\text{Refix}}\) essentially describes the depletion of \(^{13}\)C in refixed photosynthate compared with that in the CO\(_2\) produced by day respiration. The third term on the right side in Eqn (6) describes discrimination against \(^{13}\)C caused by the carboxylating enzymes (assumed to be Rubisco), gaseous diffusion of CO\(_2\), and \(\Delta_D\), which accounts for variation in the isotopic composition of the respiratory carbon. The \(\Delta_D\) is defined as \(R_d/R_g - 1\), where \(R_d\) is \(^{13}\)C/\(^{12}\)C of atmospheric CO\(_2\) and \(R_g\) is \(^{13}\)C/\(^{12}\)C of day respiration. This composite term for isotopic discrimination is modified by two processes, represented by the first and second terms on the right side in Eqn (6). The first term describes the deviation from unity of the proportional refixation rate, \(P_g/R_g\). When \(P_g\) equals \(R_g\), the discrimination goes to zero, whereas the discrimination is at a maximum when \(P_g\) is very small compared with \(R_g\). The second term on the right side in Eqn (6) accounts for the diffusion of atmospheric CO\(_2\), with \(^{13}\)C independent of that of respired CO\(_2\), into the intracellular air spaces. This term could also be written as \(R_d/R_g\) (\(g_p/p_a/P\)), where \(g_p\) is total conductance to CO\(_2\) of stomata plus boundary layer, and \(P\) is atmospheric pressure. Thus, the term is reduced from unity by the magnitude of \(g_p/p_a/P\), which describes the one-way flux of CO\(_2\) from the atmosphere into the leaf. The importance of considering one-way fluxes in isotopic models has been discussed in detail elsewhere (Farquhar et al. 1993; Cernusak et al. 2004a; Farquhar and Cernusak 2005).

A step-by-step derivation in Eqn (6) is provided in Part 3 of the Appendix by Cernusak et al. (2001). Eqn (6) does not account for any mixing of refixed photosynthate into the respiratory substrate pool. It is analogous to Eqn (2) without the term \(d\), in that it ignores the drawdown in CO\(_2\) partial pressure from \(p_i\) to \(p_a\), and any effects of photorespiration.

Gas-exchange characteristics of leaves can vary during leaf expansion. Figure 4 shows measurements of \(p_i/p_a\) in expanding
and mature leaves of two Eucalyptus species, sampled with incident photon flux densities larger than 1000 μmol m\(^{-2}\) s\(^{-1}\). Negative values of net CO\(_2\) exchange indicate CO\(_2\) efflux from illuminated leaves, and positive values indicate CO\(_2\) uptake. Data presented in this figure were originally published by Cernusak et al. (2006).

Discussion

We have reviewed six hypotheses proposed to explain δ\(^{13}\)C enrichment of heterotrophic tissues relative to leaves in C\(_3\) plants (Table 1; Fig. 3). Each of these six hypothesised mechanisms can potentially contribute to the characteristic δ\(^{13}\)C divergence. In the case of hypotheses (1) and (2), variable biochemical composition and seasonal separation of growth, some situations can be identified where they do not appear to be operative. This suggests an additional process or additional processes that contribute to the δ\(^{13}\)C difference between leaves and non-photosynthetic tissues. However, there is clearly a need for more information about how different biosynthetic pathways influence δ\(^{13}\)C dynamics, and about seasonal variation in photosynthetic discrimination and associated changes in carbon allocation. We suggest that future research into all six hypotheses, focusing on testable predictions of each (Table 1), will provide valuable insights into sources of within-plant variation in δ\(^{13}\)C.

It is worthwhile to ask whether the δ\(^{13}\)C divergence between leaves and heterotrophic tissues in C\(_3\) plants arises primarily as the result of a \(^{13}\)C-enriching process in the sink tissue, or as a result of a \(^{13}\)C-depleting process in leaves. Available evidence would appear to support both of these possibilities. In the three studies in which respiratory fractionation appeared to cause δ\(^{13}\)C divergence between leaves and roots in herbaceous plants, the divergence was largely associated with \(^{13}\)C-enriched respiration causing a \(^{13}\)C depletion of leaf biomass, whereas the effect of \(^{13}\)C-depleted respiration on root biomass was smaller (Badeck et al. 2005; Klumpp et al. 2005; Bathellier et al. 2008). Additionally, the observation that emerging leaves tend to be \(^{13}\)C enriched and decline in δ\(^{13}\)C during leaf expansion further suggests a \(^{13}\)C-depleting process. Finally, the observation that sink tissues tend to show similar δ\(^{13}\)C to concurrent phloem sap carbon argues against a marked \(^{13}\)C-enriching process in heterotrophic tissues (Pate and Arthur 1998; Cernusak et al. 2002, 2005). However, there is also counterevidence to suggest that heterotrophic tissues can be subject to a \(^{13}\)C-enriching process; \(^{13}\)C analyses of achlorophyllous, heterotrophic tobacco plants showed an enrichment of ~2‰ in plant organic material compared with the organic growth media (Terwilliger and Huang 1996; Le Roux-Swarthout et al. 2001a).

The theoretical prediction (Tcherkez et al. 2004) and recent experimental confirmation (Gessler et al. 2008) of a diel cycle in the δ\(^{13}\)C of phloem-exported carbon in C\(_3\) plants, summarised under hypothesis (3), provides a promising avenue for future research. In addition to the day/night variation in δ\(^{13}\)C of exported carbohydrate, the diel explanation also requires a differential use of day sucrose vs. night sucrose between leaves and heterotrophic tissues. Thus, if this is an important cause of \(^{13}\)C enrichment of heterotrophic tissues compared with leaves, one would expect species that predominantly exhibit leaf growth during the night, such as Helianthus annuus L. (Boyer 1968) and Glycine max (L.)
would imply carbon losses (hypothesis 4) or additions due to discrimination against 13C. In contrast, hypotheses (4) and (5) suggest that photosynthate is partitioned, with associated isotopic variation, such that it may or may not involve a departure from photosynthetic 13C discrimination at the whole-plant scale. Thus, for applications that aim to interpret photosynthetic discrimination against 13C, it could be important to differentiate between the various mechanisms potentially causing 13C enrichment of heterotrophic tissues.

Conclusion

We have attempted to summarise a series of hypotheses aimed at explaining observations of 13C enrichment in non-photosynthetic tissues compared with leaves in C$_3$ plants. The hypotheses concerning carbon isotope fractionation associated with diel carbohydrate dynamics, respiration, PEP carboxylation, and developmental shifts in Δ in expanding leaves all appear to be consistent with some available evidence; this evidence is, however, mostly circumstantial or partial in nature. Direct tests of these hypotheses will be required to advance our understanding of processes leading to δ^{13}C divergence between leaves and heterotrophic tissues. We emphasise that there may not exist a single, unifying explanation for this isotopic pattern; rather, it may be the net result of multiple, simultaneous processes, all of which contribute to a greater or lesser extent to the general tendency for heterotrophic tissues to be 13C-enriched compared with leaves. Unravelling the relative contributions of these processes, and their associated environmental and physiological controls, will undoubtedly lead to a deeper understanding of plant physiology.

Acknowledgements

This review resulted from a working group meeting funded by the ARC-NZ Research Network for Vegetation Function, headquartered in the Department of Biological Sciences, Macquarie University, Sydney, Australia. We thank the Network staff for their expert assistance in attending to organisational details. We thank Nerea Ubierna Lopez for comments on the manuscript. Lucas A. Cernusak gratefully acknowledges support from the Australian Research Council in the form of an APD Fellowship.

References

Manuscript received 6 August 2008, accepted 18 January 2009

http://www.publish.csiro.au/journals/fpb