Enhanced Poleward Flux of Atmospheric Moisture to the Weddell Sea Region (ODP Site 690) During the Paleocene-Eocene Thermal Maximum

Reinhard Kozdon¹, Donald E. Penman², D. C. Kelly³, J. C. Zachos⁴, John H. Fournelle⁵, and J. W. Valley⁶

¹Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA, ²Department of Geology and Geophysics, Yale University, New Haven, CT, USA, ³Department of Geoscience, UW-Madison, Madison, WI, USA, ⁴Department of Earth and Planetary Sciences, UC-Santa Cruz, Santa Cruz, CA, USA, ⁵WiscSIMS, Department of Geoscience, UW-Madison, Madison, WI, USA

Abstract Earth’s hydrological cycle was profoundly perturbed by massive carbon emissions during an ancient (56 Ma) global warming event referred to as the Paleocene-Eocene thermal maximum (PETM). One approach to gaining valuable insight into the response of the hydrological cycle is to construct sea-surface salinity (SSS) records that can be used to gauge changes in the rates of evaporation and precipitation during the PETM in such climatically sensitive areas as the circum-Antarctic region. Here, we pair oxygen isotope (δ¹⁸O) and magnesium-calcium (Mg/Ca) measurements to reconstruct PETM sea-surface temperatures (SSTs) and δ¹⁸O composition of seawater (δ¹⁸Osw) at austral Site 690 (Weddell Sea). Several discrepancies emerge between the δ¹⁸O- and Mg/Ca-based SST records, with the latter indicating that the earliest PETM was punctuated by a short-lived ~4°C increase in local SSTs. Conversion of the δ¹⁸Osw values to SSS reveals a ~4 ppt decrease ~50 ka after peak PETM warming at Site 690. This negative SSS (δ¹⁸Osw) anomaly coincides with a prominent minimum in the planktic foraminifer δ¹⁸O record published for the Site 690 PETM section. Thus, our revised interpretation posits that this δ¹⁸O minimum signals a decrease in surface-ocean δ¹⁸Osw, fostered by a transient increase in mean annual precipitation in the Weddell Sea region. The results of this study corroborate the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.

1. Introduction

The series of transient global warming events superimposed upon the long-term greenhouse climate state of the early Paleogene (~65–39 Ma) are geological analogs for gauging the future environmental consequences of unabated greenhouse gas emissions (e.g., Zachos et al., 2008; Zeebe et al., 2009; Zeebe & Zachos, 2015). The most prominent of these “thermal maxima” occurred ~56 Ma (Zeebe & Lourens, 2019) and is referred to as the Paleocene-Eocene thermal maximum or PETM. Hallmarks of the PETM in deep-sea records are abrupt decreases in the oxygen (δ¹⁸O) and carbon isotope (δ¹³C) compositions of foraminifer calcite (e.g., Kennett & Stott, 1991; Zachos et al., 2001) and a sharp decline in sedimentary calcite content (Dickers et al., 1997; Thomas et al., 1999). Together, these lines of evidence reflect ~4–5°C of ocean warming coupled with a brief pulse of intense carbonate dissolution driven by the geologically rapid release of massive quantities of δ¹³C-depleted carbon (e.g., Aze et al., 2014; Babila et al., 2016; Babila et al., 2018; DeConto et al., 2012; Dickens et al., 1995; Frieling et al., 2017; Higgins & Schrag, 2006; Jones et al., 2013; Penman et al., 2014; Svensen et al., 2004; Zachos et al., 2003; Zachos et al., 2005; Zachos et al., 2006; Zeebe et al., 2008).

The source(s) for carbon input during the PETM is debated (e.g., McInerney & Wing, 2011), but there is general consensus that many aspects of the PETM climatic and carbon cycle responses provide contextual constraints on ocean-climate change predicted to unfold in the coming centuries (Zeebe & Zachos, 2013). In theory, rising surface temperatures should accelerate and intensify the hydrological cycle (Clementz & Sewall, 2011; Held & Soden, 2000, 2006); hence, the greenhouse climate state of the PETM is thought to have been broadly associated with a more humid atmosphere (Bowen et al., 2004; Tipple et al., 2011). There is now a large body of evidence to indicate that the response of the hydrological cycle entailed a high degree of regional and temporal variability (Carmichael et al., 2017; Clechenko et al., 2007; Egger et al., 2003; Foreman et al., 2017).
et al., 2012; Handley et al., 2012; John et al., 2012; Kraus & Riggins, 2007; Larrasoaña et al., 2012; Pagani et al., 2006; Pujalte et al., 2019; Schmitz & Pujalte, 2007; Wing et al., 2005). Nonetheless, a first-order feature of the PETM hydrological cycle that was more global in scope appears to have been an increase in meridional (equator-to-pole) transport of atmospheric water vapor (e.g., Huber & Goldner, 2012; Pagani et al., 2013; Pierrehumbert, 2002). Support for such an increase in poleward moisture transport is provided by micropaleontological and n-alkane hydrogen isotope records indicating reduced sea-surface salinities in the central Arctic Ocean during the PETM (Pagani et al., 2006; Sluijs et al., 2008).

In this study, we build upon the foundation laid by previous studies in an effort to better understand how the poleward flux of water vapor changed in response to rapid carbon input during the PETM. To this end, paired $\delta^{18}O$ and Mg/Ca ratios measured from planktic foraminifer shells are used to generate parallel records of sea-surface temperature (SST) and seawater oxygen isotope composition ($\delta^{18}O_{sw}$) for the PETM section recovered at Ocean Drilling Program (ODP) Site 690 (Figure 1). This approach to reconstructing spatiotemporal variation in the hydrological cycle is predicated upon observed covariance between meridional gradients in surface $\delta^{18}O_{sw}$ and sea-surface salinity (SSS) in the modern ocean as both seawater properties are a function of differences in evaporation and precipitation (e.g., Schmitt, 1995). Culturing experiments have shown that the oxygen isotope composition of planktic foraminifer shells ($\delta^{18}O_{shell}$) is dependent upon both $\delta^{18}O_{sw}$ and calcification temperature (e.g., Bemis et al., 1998; Shackleton, 1967), whereas the magnesium content of their shells increases exponentially with increasing temperatures (e.g., Lea et al., 1999). Thus, both SSTs and surface $\delta^{18}O_{sw}$ can be determined by measuring $\delta^{18}O_{shell}$ and Mg/Ca ratios in tandem from fossil planktic foraminifers (e.g., Anand et al., 2003; Anand et al., 2008; Dahl & Oppo, 2006; Elderfield & Ganssen, 2000; Flower et al., 2004).

The PETM was first characterized using foraminifer stable isotope records constructed for the Site 690 section (Kennett & Stott, 1991), so this stratigraphic section has played a central role in shaping our perception of the PETM. Yet, a complementary SST record based on planktic foraminifer Mg/Ca ratios has hitherto been lacking for this iconic PETM section. We address this shortcoming by reporting two parallel planktic foraminifer Mg/Ca ratio records that were independently generated using different analytical techniques, which show similar values and trends through the Site 690 PETM section. Added incentive for targeting the Site 690 section is that it represents one of only a handful of PETM records from the circum-Antarctic region (Figure 1) and as such is geographically well positioned for monitoring changes in the poleward flux of atmospheric moisture during the PETM. This is the case because Rayleigh distillation renders the $\delta^{18}O$ of atmospheric water vapor (and precipitation) extremely ^{18}O-depleted relative to that of the surface ocean (Craig & Gordon, 1965). Thus, a perturbation to the global hydrological cycle resulting in enhanced poleward transport of atmospheric moisture should be signaled by a reduction in surface $\delta^{18}O_{sw}$ (and SSS) at Site 690. It is for this reason that the prominent minimum seen in the published (Kennett & Stott, 1991) planktic foraminifer $\delta^{18}O_{shell}$ record about midway through the CIE interval in the Site 690 PETM section is of particular interest to this study.

![Figure 1. Early Eocene paleogeography and location of Site 690, Weddell Sea (map modified from the ocean drilling stratigraphic network, ODSN, compiled using data files from (Hay et al., 1999)).](https://example.com/figure1.png)
2. Material and Methods

2.1. Study Site, Materials, and Chronostratigraphic Framework

Site 690 was drilled ~400 km offshore of Antarctica (65°09′S, 01°12′E) along the southwestern flank of Maud Rise in the Weddell Sea at a water depth of 2,940 meters (Barker & Kennett, 1988). Benthic foraminifer assemblages indicate a lower bathyal (~1900 m) paleo-water depth during the late Paleocene (Thomas, 1990). This relatively shallow bathymetric setting is thought to have helped minimize carbonate dissolution at Site 690; nevertheless, sedimentary calcite content decreases at the base of the section (Farley & Eltgroth, 2003; Röhl et al., 2000). The Site 690 PETM section has been studied extensively and is well-constrained by microfossil biostratigraphies (Bralower, 2002; Kelly, 2002) and foraminifer stable isotope (δ13C, δ18O) records (Kennett & Stott, 1991; Thomas et al., 2002).

The Site 690 PETM stratigraphy has been calibrated against an astronomically tuned age model, with the resulting ages being reported relative to the CIE onset in the δ13Cbulk record (Röhl et al., 2007). However, a recent study (Hupp et al., 2019) has shown that size-dependent sediment mixing has resulted in a ~14-
cm stratigraphic offset between the core depths where the CIE onset is first registered by planktic foraminifer shells (*Acarinina* spp., >250 μm) and bulk-carbonate samples (Figure 2a). Based on the sedimentation rates reported by Röhl et al. (2007), we estimate that this stratigraphic offset equates to a temporal discrepancy of ~7.31 ka. Our δ¹⁸O and Mg/Ca ratio records were compiled from the same planktic foraminifer genus (*Acarinina*) and size fraction (>250 μm) used to construct the high-resolution, planktic foraminifer δ¹³C record for the Site 690 PETM section (Thomas et al., 2002). As a result, we used the core depth (170.78 m) of the CIE onset in the *Acarinina* spp. δ¹³C record (δ¹³C*acarininid*) as our chronostratigraphic reference point in order to maintain internal consistency. An added constraint on sample selection is that the response of planktic foraminifers to PETM conditions entailed a high degree of taxonomic turnover at Site 690, with *A. soldadoensis* temporarily disappearing from the overlying CIE recovery interval (Kelly et al., 2005).

In short, the geochemical records herein reported begin ~34 cm below the stratigraphic level of the CIE onset in the δ¹³C*acarininid* record and extend up-section across the pre-CIE to CIE transition through the interval over which the prominent minimum in the planktic foraminifer δ¹⁸O*shell* record occurs in the Site 690 PETM section (Figure 2). We assigned the CIE onset in the δ¹³C*acarininid* record an age of 0.0 ka and adjusted the previously reported ages for our samples accordingly with all sample ages being reported relative (+ka) to the CIE onset in the δ¹³C*acarininid* record. Our revised age model indicates that the study section initiates at ~17.36 ka and ends at +101.85 ka relative to the CIE onset in the δ¹³C*acarininid* record (Table S1).

2.2. Foraminifer Preservation

All planktic foraminifer shells from the PETM section of Site 690 feature a “frosty” (opaque) hue when observed under reflected light, with acarininid shells possessing thickened blade-like structures (termed muricae, Blow, 1979) protruding from their surfaces. These are the telltale signs of post-depositional diagenesis (Kozdon et al., 2013; Pearson et al., 2001; Sexton et al., 2006), which is problematic for conventional planktic foraminifer δ¹⁸O*shell* analyses requiring acid-digestion of entire shells. In addition, post-depositional diagenesis tends to smooth long-term paleoclimate trends in planktic foraminifer δ¹⁸O*shell* records (Killingley, 1983) and has demonstrably attenuated the amplitude of the negative δ¹⁸O*shell* excursion signaling PETM conditions at some sites (Kozdon et al., 2013). In this study, we attempt to minimize the unwanted effects of diagenetic overprinting by performing in situ analyses of better-preserved domains within individual foraminifer shells. Specifically, previous study has shown that the basal areas of muricae contain no mural pores, making these minute domains less susceptible to diagenesis and ideal targets for in situ measurements of both δ¹⁸O and Mg/Ca ratios (Kozdon et al., 2013). This approach allows for the selection of better-preserved domains as well as the acquisition of both proxies within the same homologous domain of each shell. Conventional “solution-phase” measurements of Mg/Ca ratios were also performed in parallel for comparison with in situ measurements of Mg/Ca ratios.

2.3. In situ δ¹⁸O and Mg/Ca Measurements

Detailed descriptions of δ¹⁸O measurements in foraminifer shells by secondary ion mass spectrometry (SIMS) are published elsewhere (Kozdon et al., 2009; Kozdon et al., 2011). In short, acarininid shells were cast in epoxy, ground to midsection, and imaged by SEM to identify suitable domains for analysis. In situ δ¹⁸O data were acquired in the WiscSIMS Laboratory at the Department of Geoscience, UW-Madison, using a CAMECA IMS-1280 large radius multicollector SIMS (Kita et al., 2009; Valley & Kita, 2009) with analytical conditions similar to those reported by Kozdon et al. (2011). Depending on the size of the target, samples were analyzed with a 10 μm or 3 μm primary beam (Table S2). Four consecutive measurements of UWC-3 calcite standard (δ¹⁸O = 12.40‰). Vienna standard mean ocean water; VSMOW; Kozdon et al., 2009) were performed before and after every set of typically 10 sample analyses. The average analytical precision (reproducibility) for 10 μm beam conditions was 0.3%ε (±2 SD, spot-to-spot) and ± 0.7%ε for analysis performed with a 3 μm primary beam. Every polished acarininid shell featured several suitable domains for in situ measurements. We found that intrashell δ¹⁸O variation of these domains is typically within analytical error; thus, only 1–2 in situ SIMS δ¹⁸O measurements were performed in each acarininid shell. After SIMS δ¹⁸O measurements, the appearance of each analysis pit was assessed by SEM imaging. We consider δ¹⁸O data from “irregular” pits (Cavosie et al., 2005) overlapping epoxy resin, cracks, and cavities as being possibly compromised, and values from these measurements were excluded from the data set.
In situ Mg/Ca ratios were acquired from ~3-μm diameter spots within the muricae bases of the acarininid shells using a Cameca SX-51 electron microprobe at the UW-Madison Department of Geoscience with analytical conditions similar to those previously reported (Kozdon et al., 2013). Whenever possible, Mg/Ca analyses were made adjacent to the SIMS analysis pits or in comparable domains within the same chamber. Only EPMA analytical totals of 98.5–100.5 wt.% were considered acceptable (Table S3). As previously reported by Nuernberg (1995), Mg/Ca measurements in planktic foraminifer shells by EPMA exhibit a substantial degree of intrashell variation due to various processes affecting biocalcification (e.g., Bentov & Erez, 2006; Eggins et al., 2003). Thus, whenever possible, multiple Mg/Ca measurements were made in each acarininid shell and used to calculate the average value of each specimen.

For comparative purposes, a parallel whole-shell planktic foraminifer Mg/Ca record was constructed independently (Table S4). From each sample, 15–25 shells of *A. soldadoensis* (250–300 μm size fraction) were crushed and cleaned with a reductive-oxidative treatment (Boyle & Keigwin, 1985 as revised by Martin & Lea, 2002) prior to being dissolved in 0.075 N HNO₃. The Mg/Ca ratios were measured using a Finnigan Element XR inductively coupled plasma mass spectrometer (ICP-MS) housed at the University of California Santa Cruz and following the methods of Brown et al. (2011). Based on replicate measurements of an in-house carbonate standard, external precision on calcite Mg/Ca ratios is 2% (RSD).

2.4. Calculation of Mg/Ca Temperature Anomalies

Pre-CIE baseline conditions were determined by EPMA measurements of 19 shells from four core samples ranging from 170.81 to 171.12 mbsf (−1.53 to −17.36 ka relative to the CIE onset), with an average Mg/Ca ratio of 2.63 mmol/mol (Table S5). The PETM is associated with a significant (~0.3 pH units) drop in ocean pH (e.g., Babila et al., 2018; Gutjahr et al., 2017; Penman et al., 2014), which is estimated to increase the Mg/Ca ratios of foraminifer shells by about 15% (Evans et al., 2016). The δ¹¹B and B/Ca records by Penman et al. (2014) indicate an abrupt and sustained acidification of the upper ocean coincident with the onset of the PETM. Therefore, all Mg/Ca ratios above the CIE onset (1.57 ka to 101.85 ka after CIE onset, Table S1) were adjusted by 15% to account for the effect ocean acidification on foraminifer Mg/Ca, whereas pre-CIE Mg/Ca ratios remained uncorrected.

The temperature dependence of foraminifer Mg/Ca to temperature is described by the general equation (e.g., Anand et al., 2003; Lea et al., 1999):

\[
\frac{\text{Mg/Ca}_{\text{shell}}}{\text{B}} = x \exp^{A \times \frac{T}{C}}
\]

where Mg/Ca is in mmol/mol, \(T\) is the calcification temperature in °C, \(A\) is the exponential constant for temperature sensitivity, and \(B\) is the pre-exponential constant. A range of values for \(B\) and \(A\) has been published based on shells from plankton tows, sediment traps, core tops, or culture experiments (e.g., Anand et al., 2003; Elderfield & Ganssen, 2000; Gray et al., 2018; Lea et al., 1999; Rosenthal et al., 1997). For the calculation of relative temperature changes with respect to pre-CIE conditions, the pre-exponential constant \(B\) is not required. Accordingly, Mg/Ca temperature anomalies were calculated using the equation of Zachos et al. (2003):

\[
\Delta T = \frac{1}{A} \ln \left(\frac{C}{100} + 1 \right)
\]

where \(\Delta T\) is the relative change in temperature (°C) and \(C\) is the percentage change in Mg/Ca with respect to the mean pre-CIE baseline Mg/Ca value of 2.63 mmol/mol.

Use of planktic foraminifer Mg/Ca ratios to calculate SSTs must take into account the Mg/Ca ratio of past seawater (Mg/Casw). Coupled clumped-isotope and Mg/Ca ratio measurements of foraminifer shells from a set of globally distributed sites suggest that the Mg/Ca ratio of early Eocene seawater was ~2 mol/mol, ~40% of modern (Evans et al., 2018). Comparably lower values of early Eocene Mg/Casw were determined by analyses of calcite veins that precipitated from seawater-derived fluids in ocean ridge flank basalts (Coggon et al., 2010). In addition, the response of foraminifer Mg/Ca to lower Mg/Casw is nonlinear (Evans et al., 2015; Evans et al., 2016; Segev & Erez, 2006), and the exponential constant \(A\) for lower Mg/Casw needs to be determined. As the planktic foraminifer species used in this study is extinct, we used...
the adjustment for lower Mg/Ca$_{sw}$ reported by Evans, Brierley, et al. (2016), which is based on the response of cultured specimens of the modern planktic foraminifer species *Globigerinoides ruber* to variations in Mg/Ca$_{sw}$:

$$A = -0.0029 \times \text{Mg}_s/\text{Ca}_s^2 + 0.032 \times \text{Mg}_s/\text{Ca}_s$$ (3)

With an early Eocene Mg/Ca$_{sw}$ value of 2.0 mol/mol, the exponential constant A calculated by equation 3 is 0.056. This value is used in equation 2 to calculate Mg/Ca temperature anomalies.

2.5. Calculation of δ^{18}O-Temperature, δ^{18}O$_{sw}$ Composition, and Salinity Anomalies

For the calculation of δ^{18}O-based temperature anomalies, pre-CIE baseline conditions were determined by averaging in situ δ^{18}O analyses in 13 shells from four core samples ranging from 170.81 to 171.12 mbsf (+1.53 to −17.36 ka relative to the CIE onset) with an average δ^{18}O value of −2.21‰ (Table S5). Similar to Mg/Ca, planktic foraminifer δ^{18}O values are sensitive to changes in ocean pH. Therefore, δ^{18}O$_{SIMS}$ values from shells sampled within the CIE interval (+1.57 ka to +101.85 ka after CIE onset, Table S5) were adjusted by 0.27‰ (Uchikawa & Zeebe, 2010) to account for the abrupt and sustained drop of 0.3 pH units after the CIE onset (sensitivity of −0.89‰/pH unit). Pre-CIE δ^{18}O values remained unadjusted. The relationship between ocean pH and planktic foraminifer δ^{18}O has been robustly characterized for only two modern species, and their sensitivities vary significantly (−0.89‰/pH unit and −2.51‰/pH unit, Spero et al., 1997; Uchikawa & Zeebe, 2010). We therefore performed additional calculations using the higher sensitivity of −2.51‰/pH unit and show these results in the Supplementary Material (Figure S1, SOM). The δ^{18}O temperature anomaly relative to the pre-CIE baseline was calculated using a $\Delta\delta^{18}$O$_{calcite}/\Delta T$ relation of −0.213‰/°C (e.g., Zachos et al., 2003).

Differences between the δ^{18}O$_{SIMS}$ and Mg/Ca-based SST anomaly records suggest local changes in surface δ^{18}O$_{sw}$, driven by secular variation in the precipitation-evaporation balance at Site 690. We therefore used the $\Delta\delta^{18}$O$_{shell}/\Delta T$ relation (−0.213‰/°C) to convert these differences to expected changes in surface δ^{18}O$_{sw}$ composition. For example, if the SST anomalies calculated independently from Mg/Ca and δ^{18}O differ by 1°C, past surface δ^{18}O$_{sw}$ needs to be adjusted by 0.213‰ so that both temperature anomalies feature the same values with respect to pre-CIE baseline conditions. The adjustment to δ^{18}O$_{sw}$ (0.213‰) used to reconcile the difference between δ^{18}O$_{SIMS}$ and Mg/Ca-based SST anomaly records is then converted to change in sea surface salinity (SSS). However, the $\Delta\delta^{18}$O$_{sw}/D_{salinity}$ relation is not well constrained for early Eocene high latitude oceans and varies from 0.25‰/salinity unit to 0.50‰/salinity unit (Zachos et al., 2003). Depending on the $\Delta\delta^{18}$O$_{sw}/D_{salinity}$ relation, the adjustment of 0.213‰ to δ^{18}O$_{sw}$ corresponds to a change in SSS between −0.45 and −0.9 psu. We therefore use both of the aforementioned $\Delta\delta^{18}$O$_{sw}/D_{salinity}$ relations to delimit SSS variation expressed in our δ^{18}O$_{sw}$ record.

Planktic foraminifer Mg/Ca ratios are also sensitive to salinity, showing a −3% to 5% decrease in Mg/Ca with for each unit decrease in salinity (e.g., Hönisch et al., 2013). Thus, an adjustment for salinity should be considered as uncorrected Mg/Ca values may cause a significant overestimation of the salinity shift. We caution, however, that such a salinity correction involves a degree of circular reasoning since salinity variation was initially based on paired δ^{18}O:Mg/Ca analyses. With this caveat in mind, we adjusted our planktic foraminifer Mg/Ca ratios to more fully appreciate how changes in salinity might influence our Mg/Ca-based SST and δ^{18}O$_{sw}$ reconstructions. This “sensitivity test” was carried out using an empirically derived relation (ΔMg/Ca = 4% per salinity unit) for salinity effect (Hönisch et al., 2013) and the average salinities (i.e., mean of the “salinity field” defined by the $\Delta\delta^{18}$O$_{sw}/D_{salinity}$ relation ranging from 0.25‰/salinity unit to 0.50‰/salinity unit) that were initially computed for each core sample without any salinity correction to iteratively adjust our measured Mg/Ca ratios. The resulting “salinity-corrected” Mg/Ca ratios were then used to recalculate the Mg/Ca-temperature anomaly record. The differences between the δ^{18}O$_{SIMS}$ and salinity-corrected Mg/Ca SST anomalies were then used to recalculate δ^{18}O$_{sw}$ and SSS anomalies (Table S5). The salinity correction for Mg/Ca reduces the amplitude of the SSS anomaly by about 40%.

3. Results

Given the uncertainties surrounding both the δ^{18}O and Mg/Ca ratio records, we opted not to report absolute values for the various environmental parameters (SST, δ^{18}O$_{sw}$ and SSS) and instead describe environmental
change during the PETM as “anomalies” relative to the pre-CIE baseline conditions. With this being said, we note that the δ18O_SIMS and published acarininid δ18O_shell records (Kennett & Stott, 1991) delineate grossly similar trends (Figure 2b), but the δ18O_SIMS values are, on average, ~1‰ lower than corresponding δ18O_shell values. Owing to the frosty appearance of the acarininid shells, we attribute this systematic offset to measurement of 18O-enriched diagenetic calcite by conventional whole-shell gas-source mass spectrometry, although inter-instrument δ18O differences cannot be ruled out (e.g., Wycech et al., 2018). The δ18O_SIMS and δ18O_shell records show quasi-simultaneous shifts toward lower values just above the CIE onset and feature minima (δ18O_SIMS: −3.8‰, δ18O_shell: −2.2‰) ~50 ka after the CIE onset. This same interval also exhibits the largest δ18O_SIMS-shell offset (approaching 1.5‰) between these two analytical approaches (Figure 2b). The total amplitude of the δ18O decrease is ~2‰ and ~2.5‰ in the δ18O_shell and δ18O_SIMS records, respectively. Starting at about +60 ka after the CIE onset, δ18O values in both records steadily increase back toward pre-CIE values before ending near the base of the CIE recovery interval (Figure 2b).

The two parallel Mg/Ca records show similar values and trends (Figure 2c), thereby precluding an inter-instrument or method-related bias between the in situ EPMA and conventional ICP-MS measurements. Both of the Mg/Ca records feature an abrupt, but short-lived, ~2 mmol/mol increase immediately above the level of the CIE onset that is not accompanied by a decrease in the δ18O_SIMS and δ18O_shell records (Figures 2b and 2c). The stratigraphic expression of this transient increase differs slightly in the two Mg/Ca records with the conventional ICP-MS record featuring a “double peak” that is less clearly defined and somewhat concatenated in the EPMA-derived record (Figure 2c). This minor discrepancy notwithstanding, Mg/Ca ratios in both records subsequently decline to values (~2.5 mmol/mol) approaching the pre-CIE baseline and remain relatively invariant over the very interval in which the minima in the δ18O_shell and δ18O_SIMS records occur (Figures 2b and 2c).

4. Discussion

4.1. Local Sea-Surface Temperature Anomaly at Site 690

The significance of the differences between the δ18O_SIMS and Mg/Ca records becomes more evident when the two proxies are used to generate separate SST-anomaly records (Figure 3a). The δ18O composition of foraminifer shells is a function of temperature and ambient seawater δ18O_sw, with rates of
precipitation/evaporation (i.e., salinity effect) and changes in continental ice volume being the primary controls on δ18Osw (e.g. Emiliani, 1955; Shackleton, 1974). The latter factor, ice volume effect, is discounted owing to the absence of large continental ice sheets during the time period encompassing the PETM (Francis, 1988). Thus, after adjusting measured δ18O values from within the CIE interval by 0.27‰ to account for a drop of ~0.3 units in ocean pH (Gutjahr et al., 2017; Penman et al., 2014; Uchikawa & Zeebe, 2010), the δ18O-based temperature anomalies were calculated using the Δδ18Oshell/ΔT relation of −0.213°C and assuming that local surface δ18Osw remained constant (Shackleton & Kennett, 1975; Zachos et al., 2001). Likewise, the use of Mg/Ca ratios as an independent proxy for SST is complicated by secular variation in the Mg/Ca ratio of seawater. Most reconstructions indicate that the Mg/Ca ratio of seawater has increased over the Cenozoic, and early Eocene values for Mg/Ca were possibly as low as 2.0 mol/mol (Cugnon et al., 2010; Evans et al., 2018). The response of foraminifer Mg/Ca to lower seawater Mg/Ca is nonlinear, and the pre-exponential constant of the Mg/Ca temperature equation needs to be adjusted accordingly (Evans, Brierley, et al., 2016). In addition, the pH drop of 0.3 units could have resulted in a 15% increase in foraminifer Mg/Ca (Evans et al., 2015). Therefore, the Mg/Ca temperature anomaly record (Figure 3a) is adjusted for lower Eocene seawater Mg/Ca and a ~0.3 drop in ocean pH (Table S5). An additional adjustment for the effects of salinity on foraminifer Mg/Ca ratios was also applied (see section 2.5 for more details).

Major discrepancies in the timing and amplitude of peak PETM warming are evident between the two SST anomaly records even after adjusting both the δ18O and Mg/Ca records for the effects of various non-thermal factors (Figure 3a). Peak warming in the δ18OsimS record is signaled by an apparent ~9°C anomaly at +50 ka after the CIE onset, whereas peak warming in the in situ Mg/Ca record is signaled by an abrupt ~4°C increase in SSTs just after the CIE onset at +3.13 ka. The curious “double peak” of the SST anomaly delineated by both of our Mg/Ca records could be construed as indicating that the earliest stages of the PETM entailed two pulses of ~4°C warming, one just after the CIE onset (+3 ka) and a second at about +8 ka (Figure 3a). However, a similar double peak in warming has not been seen in other pelagic PETM sections; hence, we cannot rule out the possibility that this curious feature of our Mg/Ca records may be an artifact of sediment mixing processes at Site 690 (e.g., Hupp et al., 2019; Kirtland Turner et al., 2017; Thomas et al., 2002). After this brief increase in SSTs, Mg/Ca-based temperatures return to near pre-CIE values at +11.58 ka, followed by a slight increase (~2–3°C above pre-CIE condition) over the interval (+30 to +80 ka) in which apparent peak warming is signaled by the δ18OsimS minimum (Figure 3a).

The amplitude of the local SST anomaly (4–5°C) registered by the Mg/Ca record is only about half of that inferred (~9°C) from the published Site 690 δ18Oshell record and falls at the lower end of estimates (~5–7°C) obtained from an organic-based SST proxy (TEX86) record generated for another PETM section in the Southern Ocean (Sluijs et al., 2011). Instead, our estimate of 4–5°C warming is more comparable in scale to SST anomalies reported for PETM sections from tropical (Aze et al., 2014; Zachos et al., 2003) and Arctic (Sluijs et al., 2006) regions and is consonant with the estimated global mean surface temperature anomaly (4–5°C) for the PETM (Jones et al., 2013). An interesting corollary to our estimate for peak warming (~4–5°C) at Site 690 is that it contradicts the notion of “polar amplification” in the absence of ice-albedo effects during the PETM (e.g., Sluijs et al., 2006).

The absence of polar amplification in our SST anomaly reconstruction could be an artifact stemming from the selective dissolution of Mg-rich domains within the planktic foraminifer shells (e.g., Dekens et al., 2002; Rosenthal et al., 2000), which would attenuate the true amplitude of the local SST anomaly expressed in both of the Mg/Ca records. The drop in sedimentary calcite content associated with the CIE onset at Site 690 is a common feature of pelagic PETM sections (e.g., Bralower et al., 2014; Colosimo et al., 2006; Thomas et al., 1999) and reflects a pulse of intensified carbonate dissolution fueled by a CO2-induced drop in ocean pH (Dickens et al., 1998; Penman et al., 2014; Zachos et al., 2005). Thus, a possible role for selective dissolution is consistent with the decrease in sedimentary calcite content and increase in planktic foraminifer shell fragmentation, as documented by Kelly et al. (2005), over the same interval featuring the Mg/Ca-based SST anomaly in the Site 690 PETM record. It is also possible that carbonate dissolution at Site 690 was more severe and that the basal stratigraphy of this PETM section may be incomplete as recently argued by others (Ajayi et al., 2020; Zhang et al., 2020). If the base of the CIE interval is truncated by hiatus, then the ~4–5°C of warming may represent a minimum.
This being said, we note that signs of intra-shell dissolution and etching were not observed in the many shells cross-sectioned for in situ analyses, although we acknowledge that, while the analyzed domains within the acarininid shells are better preserved than other parts of the same shells, they are likely not pristine. To a first approximation, secular variation in our Mg/Ca-based SST anomaly record appears to track model (LOSCAR) simulations for carbon input during the PETM (Zeebe et al., 2009). Specifically, the transient (<10 kyr) peak in SSTs reflects enhanced greenhouse radiative forcing caused by a large carbon-input event at the CIE onset followed by a more prolonged period (~50 kyr) of slightly cooler but still warm SSTs sustained by continued carbon release at slower rates over the main part of the CIE. Thus, the stratigraphic profile of our Mg/Ca-based SST anomaly curve may reflect secular variation in radiative forcing at this climatically sensitive location driven by two phases of carbon input that differ in their timing, duration, and emission rate during the PETM.

4.2. Changes in Surface Ocean δ¹⁸Oₛₛₛ and SSS at Site 690

The most parsimonious explanation for the disparities seen between the δ¹⁸Oₛₛₛ and Mg/Ca SST anomaly records is local changes in surface δ¹⁸Oₛₛₛ driven by secular variation in the precipitation-evaporation balance at Site 690. To explore the implications of this alternative interpretation, we used the Δδ¹⁸Oₛₛₛ/ΔT relation of 0.213‰/°C to convert the differences between corresponding δ¹⁸Oₛₛₛ and Mg/Ca SSTs to expected changes in surface δ¹⁸Oₛₛₛ (Zachos et al., 2003). The resulting record reveals that a brief excursion to higher surface δ¹⁸Oₛₛₛ values coincided with peak PETM warming just after the CIE onset in the δ¹³C_aacarininid record (Figure 3b). However, the most salient feature is a prominent decrease, where surface δ¹⁸Oₛₛₛ values drop as low as −1.4‰ relative to the pre-CIE baseline over the interval (+30 to +80 ka) in which the δ¹⁸Oₛₛₛ minimum occurs. This finding differs from the long-held view that the δ¹⁸Oₛₛₛ minimum at +50 ka signals peak PETM warming (e.g., Kennett & Stott, 1991) and indicates that this δ¹⁸Oₛₛₛ minimum actually reflects a significant decrease in surface δ¹⁸Oₛₛₛ at Site 690. Surface δ¹⁸Oₛₛₛ values subsequently increase to values approaching the pre-CIE baseline at about +80 ka (Figure 3b).

Conversion of the surface δ¹⁸Oₛₛₛ values to SSS anomalies indicates that peak PETM warming was accompanied by a brief increase of ~2 ppt in SSS at Site 690 (Figure 3c). The width of the “salinity anomaly field” is a function of the selected Δδ¹⁸Oₛₛₛ/Dsalinity relation, which varies from 0.25‰/salinity unit to 0.50‰/salinity unit (Zachos et al., 2003). On the basis of our paired δ¹⁸Oₛₛₛ:Mg/Ca records, we conclude that peak PETM warming and an increase in SSS, reflecting a transient shift to warmer, more arid conditions at Site 690, was tightly coupled to initial carbon input. The ensuing δ¹⁸Oₛₛₛ minimum equates to a reduction in SSS beginning at about +30 ka with the lowest values (~2.9 to 5.8 ppt lower than pre-CIE baseline) occurring at about +50 ka (Figure 3c). This local negative SSS anomaly signals a transient increase in mean annual precipitation sustained by an increase in the poleward flux of atmospheric moisture at Site 690. Computed SSS anomalies subsequently increase to values approaching the pre-CIE baseline at about +80 ka (Figure 3c).

4.3. Implications for Carbon Cycling and Continental Weathering During the PETM

Such extreme fluctuations in the meridional balance between precipitation and evaporation would have influenced carbon cycling over the course of the PETM (John et al., 2008). If the initial shift to warmer, drier conditions occurred over geographically expansive tracts of the mid- and high-latitudes then the oxidation of sedimentary organic matter may have contributed to the CO₂ flux emitted during the early stages of the PETM (e.g., Kurtz et al., 2003; Panchuk et al., 2008). The ensuing reversal to slightly cooler SSTs, but substantially lower SSSs, is the most robust feature delineated by our paired δ¹⁸Oₛₛₛ:Mg/Ca record and culminates in a negative SSS anomaly that is ~4 ppt lower than the mean pre-CIE value (Figure 3c). This significant downturn in SSS signals a major change in the meridional balance between precipitation and evaporation, which in turn increased the poleward transport of atmospheric moisture and mean annual precipitation at Site 690. This particular result is consonant with General Circulation Models predicting greater poleward migration of storm tracks under a warmer climate regime (Caballero & Langen, 2005). Such an extreme turnabout in hydrological regime would have altered spatial patterns of continental erosion/sedimentation and likely intensified chemical weathering of landmasses (Carmichael et al., 2017, 2018). Such a supposition is supported by the marked increases in siliciclastic sedimentation at nearshore, shallow marine sites during the PETM (John et al., 2008; Nicolo et al., 2010), and by a concomitant change in clay mineralogy to predominantly kaolinite in some geological sections (Bolle &
Adatte, 2001; Clechenko et al., 2007; Gibson et al., 2000). Although the syngenecity of kaolinitization and PETM conditions has been questioned (John et al., 2012; Thiry, 2000), and even attributed to the redeposition of a rapidly weathered impact ejecta dust blanket (Kent et al., 2003), a similar increase in kaolinite amongst detrital clay assemblages in the Site 690 section has been ascribed to increased continental weathering and freshwater input driven by a transient increase in atmospheric heat transport toward the poles (Kelly et al., 2005; Robert & Kennett, 1994). Here, we note that the latter interpretation (Robert & Kennett, 1994) is consistent with the prominent negative SSS anomaly recorded over the CIE interval (+30 ka to +80 ka) at Site 690. The apparent lag in local hydrologic response to warming might be related to orbital effects (Kiehl et al., 2018).

5. Conclusions

Paired δ^{18}O/Mg/Ca analyses, acquired in situ from micrometer-scale domains within shells of the planktic foraminifer, A. soldadoensis, indicate that peak PETM warming was coupled to an increase in SSS at ODP Site 690 (Weddell Sea). This initial shift to hotter, more arid conditions was tightly coupled to the initial release of massive quantities of carbon to the atmosphere. The local SST anomaly of ~4°C reflecting peak PETM warming at Site 690 may represent a minimum owing to the possibility that the base of the PETM section is truncated by a hiatus. A prominent ~4 ppt decrease in SSS, back-calculated from paired δ^{18}O/Mg/Ca measurements, is observed ~50 ka after peak PETM warming. This negative SSS (δ^{18}Osw) anomaly coincides with a minimum in the Site 690 planktic foraminifer δ^{18}O record that has previously been cited as evidence for polar amplification of PETM warmth in the absence of ice-albedo effects. Thus, our revised interpretation posits that this δ^{18}O minimum actually signals a decrease in surface-ocean δ^{18}Osw fostered by a transient increase in mean annual precipitation in the Weddell Sea region, thereby corroborating the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.

Such data-based reconstructions of the response of Earth’s hydrological cycle to greenhouse gas forcing are vital to understanding how atmospheric moisture and latent heat were redistributed across the planet during past episodes of global warming. This study confirms that Earth’s hydrological cycle was profoundly perturbed by massive carbon input during the PETM, and the highly resolved chronostratigraphy of the Site 690 section provides temporal constraints on secular variation in the poleward flux of atmospheric moisture and latent heat. The surface δ^{18}Osw (and SSS) record herein reconstructed for the Site 690 PETM section improves geographic coverage in the climatically sensitive circum-Antarctic region, which should prove useful for testing outcomes of computational models designed to simulate PETM climatic conditions (e.g., Zhu et al., 2020).

Data Availability Statement

Data tables of in situ δ^{18}O and Mg/Ca analyses are available from the PANGAEA domain repository (https://doi.pangaea.de/10.1594/PANGAEA.914650, https://doi.pangaea.de/10.1594/PANGAEA.914651).

Acknowledgments

This research was supported by NSF OCE-1131516 and the Wisconsin Alumni Research Foundation to D.C.K. This research used samples provided by the International Ocean Discovery Program (IODP). WiscSIMS is supported by NSF EAR-1658823 and the University of Wisconsin-Madison. Sample mounts were prepared by Brian Hess.

References

Babila, T. L., Penman, D. E., Hönisch, B., Kelly, D. C., Bralower, T. J., Rosenthal, Y., & Zachos, J. C. (2018). Capturing the global signature of PETM warming in the Weddell Sea region, thereby corroborating the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.

Data Availability Statement

Data tables of in situ δ^{18}O and Mg/Ca analyses are available from the PANGAEA domain repository (https://doi.pangaea.de/10.1594/PANGAEA.914650, https://doi.pangaea.de/10.1594/PANGAEA.914651).

References

Babila, T. L., Penman, D. E., Hönisch, B., Kelly, D. C., Bralower, T. J., Rosenthal, Y., & Zachos, J. C. (2018). Capturing the global signature of PETM warming in the Weddell Sea region, thereby corroborating the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.

Data Availability Statement

Data tables of in situ δ^{18}O and Mg/Ca analyses are available from the PANGAEA domain repository (https://doi.pangaea.de/10.1594/PANGAEA.914650, https://doi.pangaea.de/10.1594/PANGAEA.914651).

Acknowledgments

This research was supported by NSF OCE-1131516 and the Wisconsin Alumni Research Foundation to D.C.K. This research used samples provided by the International Ocean Discovery Program (IODP). WiscSIMS is supported by NSF EAR-1658823 and the University of Wisconsin-Madison. Sample mounts were prepared by Brian Hess.

References

Babila, T. L., Penman, D. E., Hönisch, B., Kelly, D. C., Bralower, T. J., Rosenthal, Y., & Zachos, J. C. (2018). Capturing the global signature of PETM warming in the Weddell Sea region, thereby corroborating the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.

Data Availability Statement

Data tables of in situ δ^{18}O and Mg/Ca analyses are available from the PANGAEA domain repository (https://doi.pangaea.de/10.1594/PANGAEA.914650, https://doi.pangaea.de/10.1594/PANGAEA.914651).

Acknowledgments

This research was supported by NSF OCE-1131516 and the Wisconsin Alumni Research Foundation to D.C.K. This research used samples provided by the International Ocean Discovery Program (IODP). WiscSIMS is supported by NSF EAR-1658823 and the University of Wisconsin-Madison. Sample mounts were prepared by Brian Hess.

