1. Drake and Righter (2002) use several different arguments to investigate the source of the Earth’s water.

a) The highly siderophile elements (HSE) show concentrations of about 3×10^{-3} times chondritic in the Earth’s mantle. If chondrites contain ~10 wt% H$_2$O and the mass of the Earth’s mantle is 4×10^{24} kg, what mass of water was delivered by chondrites? How does this compare with the estimated surface water inventory of 10^{21} kg?

b) The Earth’s water has a D/H ratio of about 10^{-4}, while comets have a D/H of about 2×10^{-4}. What is the maximum fraction of the Earth’s water that could have been delivered by comets?

c) Assuming solar elemental abundances, the ratio of Ar/O in comets should be about 5×10^{-3}, and most of the argon is 36Ar. If all the Earth’s water is delivered by comets, how much 36Ar should there be in the Earth’s atmosphere?

d) The actual mass of atmospheric 36Ar is about 2×10^{16} kg. What fraction of the Earth’s water could have been delivered by comets? How would this estimate change if the Earth’s total water content exceeded 10^{21} kg?

e) Say what you can about the source and amount of water on Mars, using the following information: the mass of 36Ar in the Martian atmosphere is about 10^{11} kg, Martian mantle HSE concentrations are about the same as for Earth, the mass of the Martian mantle is about 4×10^{23} kg and Martian water has a D/H ratio of about 2×10^{-4}. How might you reconcile your different estimates of the Martian water abundance?