Show all your working for full credit.

1. Here we’ll investigate dunes on Pluto.

a) The current atmospheric pressure on Pluto is about 1 Pa. Use the ideal gas law to deduce the atmospheric density. You’ll need the temperature (40 K), molecular mass (0.028 kg mol⁻¹) and gas constant (8.3 J mol⁻¹ K⁻¹). [1]

b) The viscosity of Pluto’s N₂ atmosphere at these temperatures is about 6x10⁻⁶ Pa s. Calculate the critical diameter d, taking g=0.6 ms⁻² and assuming a particle solid density of 2 g/cc. [2]

c) Hence calculate the friction velocity v* [1]

d) Also calculate the wind speed required to initiate sediment transport at 1m above the surface (use the same roughness as in your notes). [1]

e) How does this speed compare with the speeds for Mars and Venus? Do you think dune formation on Pluto is likely under current atmospheric conditions? [2]

f) To get the required speed at 1m above the surface to be the same as for Mars, how much thicker would Pluto’s atmosphere have to be compared to the present value? [3]

g) What average global thickness of solid nitrogen would need to sublimate to give this pressure? Take the density of solid N₂ to be 1 g/cc and assume the same temperature as in part a). Hint: you will need to use the gravity of Pluto to get your answer. [2]

h) If all the solar energy was used to drive sublimation, calculate how long it would take the layer thickness in g) to sublime. The solar heat flux is 0.15 Wm⁻² and the latent heat of sublimation of N₂ is about 1.5 MJ/kg. [2] [14 total]

2. Here we’ll investigate glaciers on Pluto. We’ll assume that solid nitrogen is non-Newtonian, so that

\[\dot{\varepsilon} = A\sigma^n \exp\left(\frac{-Q}{RT}\right) \]

a) The results of Yamashita et al. show that at 56 K, a strain rate of 10⁻³ s⁻¹ requires 0.2 MPa stress while a strain rate of 10⁻² s⁻¹ requires a stress of 0.6 MPa. Use this information to deduce n for nitrogen ice. [3]

b) We also have that at 45 K, a strain rate of 10⁻³ s⁻¹ requires 0.7 MPa stress. Use this information to deduce the activation energy Q for nitrogen ice. You can take R=8.3 J mol⁻¹ K⁻¹ and assume that n is the same as in part a). [3]
c) Also use your results to deduce the value of the quantity \(A \exp(-Q/RT) \) at 45 K. Your answer will have units of MPa\(^n\) s\(^{-1}\). [1]

d) We’ll assume that the flanks of Sputnik Planitia have slopes of 5°. If the nitrogen glaciers are 100 m thick, use the notes and your answers above to deduce the maximum speed of the glaciers. You can take \(g=0.6 \text{ ms}^{-2} \) and the density of solid nitrogen to be 1 g/cc. Hint: you will need your answer to c) and it’s easiest if you calculate \(\rho gh \) as MPa not Pa. [3]

e) If the distance from the mountains to the plains is 100 km, how many years does it take a glacier to travel that distance? [1]

f) What do you deduce about the age of the nitrogen plains? [1] [12 total]

Question 3 (grads/bonus)

3. Here we’re going to study the development of a sublimation lag.

Assuming it’s energy-limited, we can write the rate of sublimation of a layer of thickness \(h \) as

\[
\frac{dh}{dt} = -\frac{F}{\rho L} (1 - A)
\]

Here \(F \) is the solar heat flux, \(\rho \) is the density, \(L \) is the latent heat and \(A \) is the albedo (i.e. the fraction of solar energy reflected).

a) We are further going to assume that the albedo is given by \(A = A_0 \left(\frac{h}{h_0} \right) \) where \(h_0 \) is the original layer thickness and \(A_0 \) the original albedo.

What happens to the albedo and the energy absorbed as \(h \) decreases? Explain the physical reason for using this expression. [2]

b) With this expression for albedo, we end up with a first-order linear differential equation for \(h \). Solve it, subject to the boundary conditions that at \(t=0, h=h_0 \). [6]

c) Sketch a plot of how \(h \) evolves with time. [2]

d) Write down an expression for the timescale for \(h \) to reach zero, in terms of \(h_0, \rho, L, A_0 \) and \(F \). [2]

e) What happens to this timescale if \(A_0 \) or \(F \) are larger? Does this make sense? [2] [14 total]