Summary – Shapes, geoid, topography

• How do we measure shape/topography?
 – GPS, altimetry, stereo, photoclinometry, limb profiles, shadows

• What is topography referenced to?
 – Usually the geoid (an equipotential)
 – Sometimes a simple ellipsoid (Venus, Mercury)

• What controls the global shape of a planet/satellite? What does that shape tell us?
 – Rotation rate, density, (rigidity)
 – Fluid planet $f \sim \Omega^2 a/2g$ Satellite $f \sim 5\Omega^2 a/g$

• What does shorter-wavelength topography tell us?
 – Hypsometry, roughness, elastic thickness?
Summary – Rheology

• Definitions: Stress, strain and strength
 – strength = maximum stress supported, $\sigma = F/A$, $\varepsilon = \Delta L/L$

• How do materials respond to stresses?: elastic, brittle and viscous behaviour
 – Elastic $\sigma = E\varepsilon$
 – Brittle $\tau = c + f\sigma$
 – Viscous $\sigma = \eta \frac{d\varepsilon}{dt}$

• What loads does topography impose?
 – $\sigma \sim 1/3 \rho gh$

• Elastic, viscous and brittle support of topography
 – Flexure, $\alpha = (4D/\Delta \rho g)^{1/4}$
 – Viscous relaxation and dynamic support
 – Role of yield stress Y and friction coefficient f in controlling topography on large and small bodies, respectively
Summary – Tectonics

• Sources of stress
 – Shape changes, loading/curvature

• Ductile response – folding, boudinage, diapirism
 – Failure of elastic buckling instability analysis

• Brittle response – faulting
 – Byerlee’s law
 – Andersonian fault mechanics ($f=0.6$ implies $\theta=60^\circ$)
 – Normal, thrust, strike-slip faulting

• Tectonics across the solar system
Summary - Volcanism

• How and why are melts generated?
 – Increase in mantle potential temperature; or
 – Reduction in solidus temperature (e.g. water); or
 – Thinning of the lithosphere

• How do melts ascend towards the surface?
 – Initially via porous flow through partially-molten rock
 – Later by flow in macroscopic fractures (dikes)

• What controls the style of eruption?
 – Magma viscosity, volatile content, environmental effects

• What controls the morphology of surface volcanic features?
 – Volcano morphology controlled mainly by viscosity
 – Flow characteristics can be used to determine material properties

• How does volcanism affect planetary evolution?
 – Advection of heat; sequestration of heat-producing elements
Summary – Impact cratering

• Why and how do impacts happen?
 – Impact velocity, comets vs. asteroids

• Crater morphology
 – Simple, complex, peak-ring, multi-ring

• Cratering and ejecta mechanics
 – Contact, compression, excavation, relaxation

• Scaling of crater dimensions
 – Strength vs. gravity, melting

• Cratered landscapes
 – Saturation, modification, secondaries, chronology

• Planetary Effects
Useful Equations

\[v_{esc} = \sqrt{\frac{2GM}{R}} = \sqrt{2gR} \]

\[P_{\text{max}} \approx \rho v_i^2 \]

\[D \approx \left(\frac{\rho_p}{\rho_t} \right)^{1/4} L^{3/4} \left(\frac{v_i^2}{g} \right)^{1/4} \]

\[s_{\text{max}} = \frac{v_{ej}^2}{g} \]
Summary – Mass Movements

• Downhill creep is diffusive: \(\frac{\partial z}{\partial t} = K \frac{\partial^2 z}{\partial x^2} \)

• Resistance to sliding depends on pore pressure:
 \[\sigma_s = c + (\sigma_n - p) \tan \phi \]

• Angle of repose is independent of gravity

• Effective friction coefficient of long-runout landslides is very low
Summary - Wind

• Sediment transport
 – Initiation of motion – friction velocity v^*, threshold grain size d_t, turbulence and viscosity
 – Sinking - terminal velocity
 – Motion of sand-grains – saltation, sand flux, dune motion

\[d_t \approx 10 \left[\frac{\eta^2}{\rho_f (\rho_s - \rho_f) g} \right]^{1/3} \]

\[q_s = C \frac{\rho_f v^*^3}{g} \]

\[v = \sqrt{\frac{4 (\rho_s - \rho_f) dg}{3 \rho_f C_D}} \]

\[v^* \approx 3.5 \frac{\eta}{\rho_f d_t} \]

• Aeolian landforms and what they tell us
Summary – Ice & Sublimation

• Ice rheology
 – Non-Newtonian \(\dot{\varepsilon} = \frac{\partial u}{\partial z} = A \sigma^n \)

• Glaciers & ice sheets
 – Cold-based vs. warm-based
 – Erosional & depositional features

• Ice in the subsurface
 – Polygons, ice wedges, thermal wave, neutron data

• Sublimation
 – Albedo-lag feedbacks
 \[\frac{dh}{dt} = \frac{P_{\text{vap}}}{\rho} \sqrt{(\mu / 2\pi RT)} \]
Summary – “Water”

- Surface flow
 - Water discharge rates
 - Sediment transport – initiation, mechanisms, rates

\[u^* = \sqrt{gh \sin \alpha} \quad u^*_{\text{crit}} = \left(\frac{\rho_s - \rho_f}{\rho_f} \right)^{1/2} (gd)^{1/2} \theta^{1/2} \]

- Channels – braided vs. meandering
- Fluvial landscapes