EART160: Equations You Should Know (in addition to high school physics)

Gravity and impacts

Newton’s law \[F = GMm/r^2 \]
Surface gravity \[g = GM/R^2 \]

Escape velocity \[v = (2gR)^{1/2} \]
Gravitational potential \[U = -GM/r \]

Orbital period \[GM = a^3 \omega^2 \]

Flexure and Stresses

Hooke’s law \[\sigma = E\varepsilon \]
Thermal expansion \[\varepsilon = \alpha \Delta T \]

Flexural parameter \[\alpha = \left(\frac{ET_e^3}{3g\Delta\rho(l - v^2)} \right)^{1/4} \]

Interiors

Hydrostatic assumption \[dP = (-)\rho gdz \]
Heat flow \[F = k \frac{dT}{dz} \]

Specific heat capacity \[E = mC_p\Delta T \]
Rayleigh number \[Ra = \frac{\rho g \alpha \Delta T d^3}{\kappa \eta} \]

Thermal diffusivity \[\kappa = k/\rho C_p \]
Diffusion timescale \[t = d^2/\kappa \]

Atmospheres

Black-body radiation \[F = \varepsilon \sigma T^4 \]
Gas law \[PV = P\mu /\rho = RT \]

Scale height \[H = RT/g\mu \]
Coriolis acceleration \[a = 2v\omega \sin \theta \]

Gravity and Tides

Angular momentum \[L = I\omega \]
Moment of inertia \[I = \int r^2 dm = \sum mr^2 \]

Kinetic energy of rotation \[E = I\omega^2/2 \]

Orbital period \[GM = a^3 \omega^2 \]
Orbital energy \[E = -GMm/2a \]

Equilibrium tide (fluid body) \[H = \frac{5}{2} R \frac{M}{m} \left(\frac{R}{a} \right)^3 \]
\(M \) is the mass of the tide-raising body