Warmup (NPC)

1) Find the general solutions to the following second-order constant coefficient homogeneous differential equations:
 a) \(y'' + 4y' + 4y = 0 \)
 b) \(y'' + 6y' + 13y = 0 \)
 [4 total]

2) Find the full solution to the following HLDE:
 \(y'' - 3y' - 4y = 0 \)
 subject to the boundary conditions that \(y' = -3/2 \) and \(y = 1 \) at \(x = 0 \).
 [3 total]

3) Find the general solutions to the following second-order constant coefficient nonhomogeneous differential equations:
 a) \(y'' - 3y' - 4y = 6x^2 \)
 b) \(y'' + y' - 2y = e^x \)
 [5 total]

4) A seismometer is an example of a damped, forced simple harmonic oscillator. The general equation for the displacement \(x \) recorded by the seismometer can be written
 \[
 \frac{d^2x}{dt^2} + \frac{2c}{m} \frac{dx}{dt} + \frac{k}{m}x = F_0\omega_0^2 \cos \omega_0 t
 \]
 where \(m \) is the mass, \(c \) a damping coefficient, \(k \) the spring constant, \(t \) is time and the forcing (e.g. an earthquake) has a constant amplitude \(F_0 \) and a constant frequency \(\omega_0 \).

 We’re going to assume that the seismometer is critically damped, which means that \(c^2 = mk \).

 a) Solve the complementary equation for this seismometer, assuming that it’s critically damped. Your solution should have two undetermined constants, \(c_1 \) and \(c_2 \). [3]

 b) Now we’re going to think about the particular solution. Assume it’s of the form \(x = A \cos \omega_0 t + B \sin \omega_0 t \) and hence find \(A \) and \(B \) in terms of \(F_0 \) and the other parameters.
Hints: Your algebra will be simpler if you replace c/m with ω and k/m with ω^2, where ω is the natural (undamped) frequency of the seismometer. And both A and B should have denominators of $(\omega_0^2 + \omega^2)^2$. [8]

c) The amplitude of the seismometer response R is given by $R = \sqrt{A^2 + B^2}$. Using your answer to b), show that the response R is given by

$$R = \frac{F_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

[4]

d) Sketch how the response R varies with the forcing frequency ω_0 for a given value of F_0 and ω. What is the value of the response at $\omega = \omega_0$? [3]

e) Is a seismometer of this kind better at recording high-frequency or low-frequency signals? Why? [2] [20 total]