Warmup (NPC)

1 a) Solve the following differential equation:

\[\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6y = 0 \]

subject to the boundary conditions that \(y = 0 \) at \(x = 0 \) and \(dy/dx = 5 \) at \(x = 0 \).

b) Solve the following differential equation:

\[\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 5y = 0 \]

subject to the boundary conditions that \(y = 0 \) at \(x = 0 \) and \(y = 1 \) at \(x = \pi/2 \).

2 One of the classic applications of differential equations is elastic flexure.

The governing equation in the case of an elastic lithosphere is

\[D \frac{d^4 w}{dx^4} + \rho gw = 0 \]

where \(x \) is the horizontal position, \(w(x) \) is the deflection of the lithosphere, \(D \) is its flexural rigidity (in Nm), \(\rho \) is the density and \(g \) is the gravity. This is a fourth-order, homogeneous DE with constant coefficients.

a) One possible solution to this DE is

\[w = ae^{-mx} \cos mx \]

where \(a \) is an undetermined constant and \(m \) is determined by the lithospheric characteristics. By substituting this solution into the governing DE, find an expression for \(m \) in terms of \(\rho, g \) and \(D \). [Note that I am not asking you to solve equation (1) directly; I’m just asking you to show that equation (2) is a solution of equation (1)].

b) The quantity \(mx \) must be dimensionless and \(x \) has the units of length. Does your answer to a) make sense in terms of units?

c) Sketch what equation (2) looks like for \(x > 0 \). What controls how far away from the origin there is a noticeable deflection? What would happen if the rigidity \(D \) were increased?
So far we have dealt with a homogeneous equation (the right-hand side of equation 1 is zero). But we can also analyze what happens if there is a driving term e.g. a load applied to the lithosphere. Let’s say there is a periodic load applied given by

\[l = \rho h_0 \sin kx \]

where \(h_0 \) and \(k \) are constants with units of m and m\(^{-1}\), respectively. This is now the right-hand side of the governing DE (equation 1).

d) Now assume that a solution to the DE is given by

\[w = w_0 \sin kx \]

where the deflection amplitude \(w_0 \) is a constant controlled by the lithospheric and load characteristics. By substituting into the governing DE, find a relationship between \(w_0 \) and \(h_0 \) in terms of \(k, g, \rho \) and \(D \). [4]

e) What happens to the amplitude of the deflection \(w_0 \) compared to the amplitude of the load \(h_0 \) if the rigidity \(D \) is increased? Does this make sense? [2]

f) What happens to the amplitude of the deflection \(w_0 \) compared to the amplitude of the load \(h_0 \) if \(k \) is decreased? Does this make sense? What does \(k \) represent? [3] [19 total]

3 The outwards orbital evolution of a satellite is given by

\[\frac{da}{dt} = \beta a^{-11/2} \]

where \(a \) is the distance of the satellite from the planet, \(\beta \) is a constant for a particular planet-satellite pair, and \(t \) is time.

a) This is a separable differential equation. Write down the general solution [3]

b) Assuming that \(a = a_0 \) at \(t = 0 \), write down the particular solution [2].

c) Using your answer to b), sketch roughly how \(a \) varies with \(t \). [2]

d) If \(a \) has not changed much from the initial value of \(a_0 \), show that \(a \) depends in a linear fashion on \(t \). Hint: it will help to write \(a \) as \(a_0 + \delta a \), where \(\delta a \) is small. [3] [11 total]