Warmup (NPC)

1a) If we have a matrix \(A \), where

\[
A = \begin{pmatrix}
1 & 2 \\
-1 & 3
\end{pmatrix}
\]

then write down \(A^T \), \(AA \), \(|A| \) and \(A^{-1} \). [4]

b) Using Gauss-Jordan elimination, find \(B^{-1} \) where:

\[
B = \begin{pmatrix}
4 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix}
\]

[4] [8 total]

2) a) Given two matrices \(A \) and \(D \), what does \((AD)^T\) equal in terms of \(A^T \) and \(D^T \)? [1]

b) Using your answer to a), what does \((ABCD)^T\) equal in terms of \(A^T \), \(B^T \) and \(C^T \)? [2]

c) Here we are going to use two special kinds of matrices: a symmetrical matrix \(A \), where \(A = A^T \); and an orthogonal matrix \(B \), where \(B^T = B^{-1} \).

We’ll define a matrix \(D = B A B^{-1} \).

By taking the transpose of \(D \) and using your answer to b), show that \(D \) is also a symmetrical matrix. [4]

d) Also prove that the product of two orthogonal matrices is also orthogonal. [3]

[10 total]

3) Here we’re going to use linear algebra to fit a line through a set of points.

Let’s say we have a set of three points \((x_1, y_1), (x_2, y_2), (x_3, y_3)\).

If all these points lie on a single line then \(y_i = mx_i + c \) with \(m \) and \(c \) constants.

In this case we can write down the relationship between the \(y_i \) and \(x_i \) as a matrix equation:

\[
A x = b
\]
Here
\[x = \begin{pmatrix} c \\ m \end{pmatrix} \]
and
\[b = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \]

a) Write down the matrix \(A \). [3]

In reality, the points will not all lie on the line. But it turns out that we can still find the best-fit line by setting
\[A^T (Ax - b) = 0 \]

b) This expression can be rewritten \(Cx = d \). Write down \(C \) and \(d \) in terms of \(A \), \(A^T \) and \(b \). [3]

c) For the three points (1, 0.8), (2, 2.1) and (3, 2.9), write down the matrices \(C \) and \(d \). [5]

We can solve the equation \(Cx = d \) using Gaussian elimination or simultaneous equations.

d) Use your answer to c) to find the best-fit values of \(m \) and \(c \) for the three points. [4]

e) Reality check: does your answer make sense? (Hint: look at the \(x, y \) values again). [1] [16 total]