Answer **Question 1** and **three (3)** of Questions 2-6.
You have 1 hour and 35 mins. to complete the test.
No calculators, phones or cheat sheets to be used (except the Formula Sheet I’ve provided you with).
Make sure you show *all* your working!

Question 1 [Everyone must answer this question]

a) Find the following integral [2]:

\[\int x^2 e^x \, dx \]

b) Use the double angle formulae to write down an expression for \(\tan(2\theta) \) in terms of \(\tan \theta \). [2]

c) Find the first three non-zero terms in the Maclaurin series expansion of \((1 - x)^n \). [2]

d) If \(\hat{a} \) and \(\hat{b} \) are unit vectors with an angle \(\gamma \) between them, write down a simple expression for \((\hat{a} \otimes \hat{b}) \cdot (\hat{b} \otimes \hat{a})\). [2]

e) Write down the equation of the plane passing through the points \((2,1,0), (1,1,1)\) and \((3,2,1)\). [2]

f) Given the following function

\[f(x, y) = 2x^2 y + xy \]

write down \(\nabla f \) and \(\nabla^2 f \). [3]

\[\begin{align*}
g) & \text{ Write down one thing you like about the course, and one thing that could be improved [1]. [14 total]}
\end{align*} \]

Question 2

You are given the function

\[f(x, y) = 2y^3 - xy^2 + x \]

a) Find the location of the critical points, and identify whether they are max, min or saddle [4]

b) Sketch the function along the line \(y = -x \). This includes finding where the horizontal axis is crossed and identifying where the turning points are, and whether they are max or min. [4]

Question 3

a) The wave equation may be written

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \]

where \(u \) is displacement and \(c \) is speed (a constant).

By assuming that equation (1) can be satisfied by a solution of the form

\[u(x, t) = u_0 \sin(kx + \omega t) \]

determine the relationship between \(c, \omega \) and \(k \). Here \(u_0, k \) and \(\omega \) are constants. [5]
b) The physical meanings of \(k \) and \(\omega \) are \((2\pi/\text{wavelength})\) and \((2\pi/\text{period})\), respectively. Hence write down an expression for the speed \(c \) in terms of wavelength and period. Does this make physical sense? [3] [8 total]

Question 4

Here we want to fit a circle passing through the origin to a set of \(N \) points \((x_i, y_i)\) (see figure).

![Figure 1](image)

a) Write down the distance \(d_i \) of the point \((x_i, y_i)\) from the origin. [1]

b) We’ll define the mismatch between the observed and predicted data point as \(E_i = d_i - r \), where \(r \) is the radius of the circle.

We want to vary the circle radius \(r \) so the total squared mismatch \(E_1^2 + E_2^2 + \cdots + E_N^2 = \Sigma E_i^2 \) is minimized.

Write down an expression for \(\Sigma E_i^2 \) in terms of \(x_i, y_i \) and \(r \) [2]

c) To minimize the mismatch, we take the derivative with respect to \(r \). Write down an expression for \(\frac{\Sigma E_i^2}{dr} \). [2]

d) Now set the derivative to zero, and solve for \(r \). Your answer will depend on \(\Sigma(x_i^2 + y_i^2)^{1/2} \). [2]

e) Hence write down in words how you calculate the best-fit radius. [1]

Question 5

Consider a vector field \(\mathbf{v} = [yz, -xz, xy] \).

a) Write down \(\nabla \otimes \mathbf{v} \) [3]

b) Also write down \(\nabla \cdot \mathbf{v} \) [1]

c) What does \(\nabla \cdot (\nabla \otimes \mathbf{v}) \) equal? [2]

d) Also write down a scalar field \(f \) which has the property that \(\nabla f = \nabla \otimes \mathbf{v} \) [2]

Question 6

a) Write down the first two non-zero terms in the Maclaurin series expansion for \(\cos(x) \). [2]

b) Do the same thing for \(\sin(x) \). [2]

c) Now write down the first four terms in the Maclaurin series expansion for \(e^{ix} \). Here \(i \) is just a constant with the special property that \(i^2 = -1 \). [3]

d) Hence show that \(e^{ix} = \cos(x) + i \sin(x) \). [1] [8 total]