Note that this is not a comprehensive list. There are things that don’t appear on this sheet that I will expect you to know (such as how sin, cos etc. are defined, or what the differential of e^x is). You will also need to be able to understand and manipulate these expressions.

Basic Trigonometry

$$\cos^2 x + \sin^2 x = 1$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

Cosine formula:

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Sine formula:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

When $x \ll 1$:

$$\sin x \approx x \quad \text{and} \quad \cos x \approx 1 - \frac{x^2}{2}$$

Basic Calculus

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Product rule:

$$\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$$

Integration by parts:

$$\int uv \, dx = uv - \int v du$$

Maclaurin series expansion:

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$$

Useful examples:

$$e^x = 1 + x + \frac{x^2}{2!} + \cdots \quad (1 + x)^n = 1 + nx + \cdots$$

Vectors

Vector $\mathbf{a} = [a_1, a_2, a_3]$

Unit vector:

$$\hat{a} = \frac{\mathbf{a}}{|\mathbf{a}|}, \quad |\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Dot product:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3$$
Cross product:
\[\mathbf{a} \otimes \mathbf{b} = [a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1] \]
\[|\mathbf{a} \otimes \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta \]

Lines and Planes
Vector and algebraic equations of a line passing through \(r_0 = (x_0, y_0, z_0) \) parallel to \(\mathbf{v} = [a, b, c] \):

\[\mathbf{r} = r_0 + t\mathbf{v} \quad \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \]

Vector and algebraic equations of a plane passing through \(r_0 = (x_0, y_0, z_0) \) perpendicular to \(\mathbf{n} = [a, b, c] \):

\[\mathbf{n} \cdot (\mathbf{r} - r_0) = 0 \quad a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]

Partial Differentials
\[\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} \]

For \(z = f(x, y) \) the total differential \(dz \) is given by
\[dz = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \]

The gradient of \(z = f(x, y) \) in two dimensions is given by
\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

The directional derivative \(D_u f \) of \(f \) in the direction \(\hat{u} \) is given by
\[D_u f = \hat{u} \cdot \nabla f \]