Combining metal and nonmetal isotopic measurements in barite to identify mode of formation

Elizabeth M. Griffith⁎, Adina Paytanb, Ulrich G. Wortmannc, Anton Eisenhauerd, Howie D. Schere

⁎ Corresponding author.
E-mail addresses: griffith.906@osu.edu (E.M. Griffith), apaytan@ucsc.edu (A. Paytan), uli.wortmann@utoronto.ca (U.G. Wortmann), aeisenhauer@geomar.de (A. Eisenhauer), hscher@geol.sc.edu (H.D. Scher).

ARTICLE INFO
Editor: Jerome G.
Keywords:
Barite
Stable strontium isotopes
Sulfidic springs
Oxygen isotopes
Radiogenic strontium isotopes

ABSTRACT
Barite (BaSO₄) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Barite can form in a variety of settings in the oceans (hydrothermal deposits, cold seeps, water column, or within sediments) and on the continents (soils, sulfidic springs and in the subsurface) when (1) two fluids mix – one containing barium and another containing sulfate, (2) sulfur is oxidized forming sulfate in a barium containing solution, or (3) barium or sulfate is concentrated in microenvironments where either sulfate or barium are already present. Hydrologic and biologic processes can therefore play key roles in the formation of barite and affect its geochemical composition. Characteristics of barite from various modern settings are identified here to serve as analogs for ancient systems, summarizing previous work and adding new details from the pelagic marine, hydrothermal, cold seep and continental setting. Radiogenic strontium in barite clearly identifies the source(s) of fluid forming barite with the most radiogenic values measured in continental sulfidic spring settings associated with a deep fluid component that interacts with ancient crustal rocks. Sulfur and oxygen isotopes can distinguish between sources of sulfate and identify settings where the influence of (bio)chemical processes such as sulfate reduction is prominent. There are no unique stable strontium isotopic signatures for barite formed in any of the settings investigated here, but Holocene coretop marine pelagic barite appears to have a constant offset from seawater of approximately –0.53‰ in coretop samples in contrast to the wide range of values in barite precipitated in other settings. Stable strontium mass dependent fractionation could be useful in understanding post-depositional and diagenetic processes such as authigenic precipitation and recrystallization.

1. Introduction

Barite (BaSO₄) is a highly stable and widely-distributed mineral found in magmatic, metamorphic, and sedimentary rocks (of all ages), as well as in soils, aerosol dust, and extraterrestrial material. Today, barite can form in a variety of settings in the oceans (hydrothermal, cold seeps, water column, sediments) and on the continents (soils, sulfidic springs and in the subsurface)– where supersaturation and precipitation of barite typically occurs from the mixing of fluids – one containing Ba and another containing sulfate (Fig. 1). In the oceans today, the global marine Ba cycle is thought to be balanced between Ba input to the oceans predominantly from rivers and groundwater (80%) and hydrothermal (20%) sources and output associated with barite and other authigenic phases (Paytan and Kastner, 1996).

Many studies of barite formation also highlight the importance of physicochemical and biochemical processes involved in the nucleation and crystal growth of barite in these settings (e.g., González-Muñoz et al., 2003; Smith et al., 2004; Sanz-Montero et al., 2009; González-Muñoz et al., 2012; Griffith and Paytan, 2012; Jennings and Driese, 2014; Widanagamage et al., 2015; Singer et al., 2016; Martinez-Ruiz et al., 2018). Barite has also been detected as a precipitate within some fluids mix – one containing barium and another containing sulfate. Many studies of barite formation also highlight the importance of physicochemical and biochemical processes involved in the nucleation and crystal growth of barite in these settings (e.g., González-Muñoz et al., 2003; Smith et al., 2004; Sanz-Montero et al., 2009; González-Muñoz et al., 2012; Griffith and Paytan, 2012; Jennings and Driese, 2014; Widanagamage et al., 2015; Singer et al., 2016; Martinez-Ruiz et al., 2018). Barite has also been detected as a precipitate within some
solution chemistry and other conditions in the environments in which barite forms on the chemical signatures recorded in barite should not be overlooked. Experimental and theoretical work, coupled with modern natural samples, provide a framework for interpreting geochemical signatures measured in modern and ancient barite samples. The isotopic composition of some of the major nonmetal (sulfur and oxygen) and minor metal (strontium and calcium) constituents of barite have been shown to be useful for identifying the origin of the solutions and processes affecting nucleation and crystal growth (Paytan et al., 2002; Griffith and Paytan, 2012 and references therein; Widanagamage et al., 2014, 2015). However, these isotope systems have not been used altogether on the same samples in a comprehensive study. In this study we suggest that the combination of multiple isotope analyses can refine environmental reconstructions.

Since barite is diagenetically stable as long as ambient sulfate is present, and oxygen isotope exchange reactions between water and sulfate are extremely slow at typical marine and subseafloor temperature and pH conditions (Kusakabe and Robinson, 1977; Zak et al., 1980; Chiba and Sakai, 1985), it is generally assumed that sulfur and oxygen isotopic signatures (δ34S, δ18O) in barite record the isotopic ratios of sulfate at the time of barite formation. While sulfate does not exchange isotopes with ambient water under normal marine pressure, temperature, and pH conditions, microbially mediated reduction/oxidation and isotope exchange reactions, as well as by abiotic re-oxidation of reduced sulfur species, will affect dissolved sulfate in interstitial waters (e.g., Chiba and Sakai, 1985; Brunner and Bernasconi, 2005; Brunner et al., 2005; Wortmann et al., 2007) and these isotopic signatures are recorded in barite formed from these solutions. Radiogenic strontium ratios (87Sr/86Sr) are indicative of the origin or source of solutions for barite precipitation (Reesman, 1968; Maynard et al., 1995; Paytan et al., 2002). Mass dependent stable strontium and calcium isotopic fractionation (88Sr/86Sr, 44Ca/40Ca) in barite appear to be influenced by chemical kinetic effects during crystal growth (Griffith et al., 2008; Widanagamage et al., 2014) which can occur post-deposition during diagenesis or during authigenic precipitation of barite.

We combine new and previously published results from radiogenic 87Sr/86Sr ratios and stable Sr-isotope measurements (88Sr/86Sr), along with 34S and 18O measurements of modern barite samples of marine (pelagic, hydrothermal, and cold seep deposits) and non-marine (continental surficial sulfidic spring deposits and soils) origin to demonstrate the usefulness of measuring multiple metal and nonmetal isotopes to identify modes of barite formation. These relationships in modern settings can serve as analogs for ancient barite deposits, expanding existing geochemical methods to understand their genesis (e.g., Koski and Hein, 2003; Torres et al., 2003).

2. Methods

2.1. Barite extraction

Samples were confirmed to be of sufficient purity for bulk dissolution and isotopic analysis by scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) prior to analysis. Samples less than ~90% barite (i.e., the Holocene coretop marine pelagic barite and continental surficial sulfidic spring deposits) were separated from contaminating material using a procedure modified from Paytan et al. (1993).

2.2. Sulfur isotope analysis

Sulfur (S) isotope analyses were done by continuous-flow mass spectrometry using a Carlo ErbaNa 1500 elemental analyzer connected to a Micromass Isoprime mass spectrometer at the U.S. Geological Survey, Menlo Park (indicated in Table 1). Samples of 4–8 mg were introduced in tin boats with 5 mg vanadium pentoxide (V2O5) mixed in with each sample. A commercial tank of SO2 was used as a reference gas for δ34S measurements, and results are reported relative to the Vienna Canyon Diablo Troilite (VCDT) standard, with a standard deviation (1σ) of 0.15% based on repeat analyses of NBS 127.

Additional S isotopes were measured at the University of Toronto, about 200 μg of powdered barite samples are mixed with ~600 μg of vanadium pentoxide (V2O5) and sealed into a tin cup. This cup is introduced into Elemental Analyzer system (Eurovector 3000), and flash combusted at 1700 °C under oxygen atmosphere. The evolving SO2 is routed into our continuous flow isotope ratio monitoring mass spectrometer system (CFIRM-MS, see above), which measures the relative abundances of 34S versus 32S. We express the results in the usual delta notation relative to VCDT.

The CFIRM-MS system is calibrated using the following international sulfate standards NBS 127, IAEA SOS and IAEA SO6 (21.1‰, +0.49‰, and ~34.05‰, VCDT respectively; Coplen et al., 2001). We additionally use an in-house synthetic BaSO4 (Sigma-Aldrich) standard (8.6‰, VCDT) to test for drift and memory effects. Replicated measurements of the in-house standard (typically > 10 measurements per run) and international standards (3–4 measurements per run) yield an average reproducibility of 0.15% (1σ).

2.3. Oxygen isotope analysis

Oxygen isotopic analyses were measured at the University of Toronto (indicated in Table 1). For oxygen isotope measurements,
<table>
<thead>
<tr>
<th>Name</th>
<th>(\delta^{88/86})Sr</th>
<th>Error</th>
<th>(\delta^{87/86})Sr</th>
<th>Error</th>
<th>(\delta^{34})S</th>
<th>Error</th>
<th>(\delta^{18})O</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS-987 [2SD]</td>
<td>(2SD)</td>
<td>CDT [1SD]</td>
<td>VSMOW [1SD]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holocene core top marine (pelagic) barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNT01 8PC, 0.0 N, 110.5 W, 3791 mbsl</td>
<td>−0.12</td>
<td>0.02</td>
<td>0.70916</td>
<td>0.00013</td>
<td>This study(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLDS-069PC, 0-5, 1.0 N, 105.6 W, 3527 mbsl</td>
<td>−0.16</td>
<td>0.01</td>
<td>0.70910</td>
<td>0.00004</td>
<td>This study(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN057-1, 0-5, 47.1 S, 5.9 E, 4398 mbsl</td>
<td>−0.16</td>
<td>0.01</td>
<td>0.70917</td>
<td>0.00004</td>
<td>This study(^a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average and SD:</td>
<td>−0.14</td>
<td>0.02</td>
<td>0.70914</td>
<td>0.00004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrothermal (oceanic) barite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juan de Fuca, exterior chimney, Middle Valley</td>
<td>0.01</td>
<td>0.01</td>
<td>0.70451</td>
<td>0.00004</td>
<td>This study(^a)</td>
<td></td>
<td></td>
<td>20.9 Estimate from Paytan et al. (2002) 13 ave. Brent Hill barite in Middle Valley (Goodfellow et al., 1993)</td>
</tr>
<tr>
<td>JDF Middle Valley 2254-23 ext. chimney</td>
<td>0.02</td>
<td>0.00</td>
<td>0.70441</td>
<td>0.00002</td>
<td>This study(^a)</td>
<td></td>
<td></td>
<td>19.7 # Paytan et al. (2002)</td>
</tr>
<tr>
<td>JDF Middle Valley 2254-28-1</td>
<td>0.03</td>
<td>0.01</td>
<td>0.70446</td>
<td>0.00018</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>22.94 # This study(^t) 9.06 ## This study(^t)</td>
</tr>
<tr>
<td>JDF Middle Valley 2254-28-2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.70444</td>
<td>0.00013</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>22.68 0.04 This study(^t) 8.86 ## This study(^t)</td>
</tr>
<tr>
<td>JDF South Explorer Ridge ALV 1439-8 Duplicate</td>
<td>0.07</td>
<td>0.03</td>
<td>0.70535</td>
<td>#</td>
<td>Paytan et al. (2002)</td>
<td></td>
<td></td>
<td>20.8 # Paytan et al. (2002)</td>
</tr>
<tr>
<td>JDF Axial Seamount ALV 2084-2A-1 Casm Site</td>
<td>0.07</td>
<td>0.06</td>
<td>0.70625</td>
<td>#</td>
<td>Paytan et al. (2002)</td>
<td></td>
<td></td>
<td>19.5 # Paytan et al. (2002) 6.52 ## This study(^t)</td>
</tr>
<tr>
<td>Guaymas Basin (GB1) 1173-1</td>
<td>−0.09</td>
<td>0.07</td>
<td>0.70615</td>
<td>0.00012</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>26.4 # Paytan et al. (2002) 8.74 0.10 This study(^t)</td>
</tr>
<tr>
<td>Guaymas Basin (GB2) 1173-11</td>
<td>−0.06</td>
<td>0.02</td>
<td>0.70565</td>
<td>0.00016</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>22.51 # This study(^t) 7.54 0.10 This study(^t)</td>
</tr>
<tr>
<td>Average and SD:</td>
<td>−0.04</td>
<td>0.08</td>
<td>0.70516</td>
<td>0.00070</td>
<td></td>
<td></td>
<td></td>
<td>21.8 2.1</td>
</tr>
<tr>
<td>Other barite: cold seep (oceanic), subsurface/diagenetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Clemente Basin</td>
<td>−0.08</td>
<td>0.00</td>
<td>0.70868</td>
<td>0.00001</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>24 ave. from Paytan et al. (2002) 9.81 0.08 This study(^t)</td>
</tr>
<tr>
<td>San Clemente Canyon</td>
<td>−0.06</td>
<td>0.06</td>
<td>0.70886</td>
<td>0.00009</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>21.93 # This study(^t) 13.74 0.20 This study(^t)</td>
</tr>
<tr>
<td>Baja Ensenada dredged</td>
<td>−0.04</td>
<td>0.06</td>
<td>0.70870</td>
<td>0.00009</td>
<td>This study(^c)</td>
<td></td>
<td></td>
<td>29.56 0.10 This study(^t) 6.66 ## This study(^t)</td>
</tr>
<tr>
<td>765C 34-2, 118-121 cm</td>
<td>0.06</td>
<td>0.02</td>
<td>0.71082</td>
<td>#</td>
<td>Paytan et al. (2002)</td>
<td></td>
<td></td>
<td>23.7 # Paytan et al. (2002) 9.4 4.6</td>
</tr>
<tr>
<td>Average and SD:</td>
<td>−0.06</td>
<td>0.02</td>
<td>0.70926</td>
<td>0.00104</td>
<td></td>
<td></td>
<td></td>
<td>24.7 3.4</td>
</tr>
<tr>
<td>Continental barite: warm, hot spring deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoolute Spring, OK, crust on spring (OK/S6)</td>
<td>0.13</td>
<td>0.08</td>
<td>0.71025</td>
<td>0.00011</td>
<td>Widadanagame et al. (2015)</td>
<td>33.4 # This study(^t) 2.98 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoolute Spring, OK, end of drainage (OK/S1)</td>
<td>0.12</td>
<td>0.05</td>
<td>0.71027</td>
<td>0.00023</td>
<td>Widadanagame et al. (2015)</td>
<td>35.9 # This study(^t) 8.33 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stinking Creek, OK (OK/S7)</td>
<td>0.16</td>
<td>0.02</td>
<td>0.71013</td>
<td>0.00003</td>
<td>Widadanagame et al. (2015)</td>
<td>42.4 # This study(^t) 10.56 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate</td>
<td>0.16</td>
<td>0.08</td>
<td>0.71200</td>
<td>0.00011</td>
<td>Widadanagame et al. (2015)</td>
<td>32.1 # This study(^t) 3.39 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stinking Creek, rock sample from bank (OK/L8)</td>
<td>0.43</td>
<td>0.16</td>
<td>0.71720</td>
<td>0.00011</td>
<td>Widadanagame et al. (2015)</td>
<td>32.1 # This study(^t) 1.89 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stinking Spring, UT: lower terrace (UT/S6)</td>
<td>0.30</td>
<td>0.03</td>
<td>0.71709</td>
<td>0.00009</td>
<td>Widadanagame et al. (2015)</td>
<td>35.6 # This study(^t) 2.07 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stinking Spring, UT: lower terrace (UT/S7)</td>
<td>0.19</td>
<td>0.06</td>
<td>0.71723</td>
<td>0.00017</td>
<td>Widadanagame et al. (2015)</td>
<td>37.8 # This study(^t) 3.98 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate</td>
<td>0.19</td>
<td>0.08</td>
<td>0.71920</td>
<td>0.00017</td>
<td>Widadanagame et al. (2015)</td>
<td>32.1 # This study(^t) 3.39 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TriPLICATE</td>
<td>0.19</td>
<td>0.08</td>
<td>0.71920</td>
<td>0.00017</td>
<td>Widadanagame et al. (2015)</td>
<td>32.1 # This study(^t) 3.39 0.08 This study(^t)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Name	δ$^{88/86}$Sr error	87Sr/86Sr Error	δ34S Error	δ18O Error	Error	K	C	T	TR	M	#	TRX	ave.	SD	
Stinking Spring, UT rock sample (UT/Liz1)	−0.21 0.02 0.71743	0.000007	31.6	#	This studyC	4.25	#	This studyT	#	#	#	#	#	#	
Stinking Spring, UT rock sample (UT/Liz2)	−0.45 0.10 0.71720	0.000012	31.6	#	This studyC	2.61	#	This studyT	#	#	#	#	#	#	
Doughty Springs, CO: Middle Spring (CO/M)	0.08 0.02 0.71354	0.000016	Widanagamage et al. (2015)	31.9	#	This studyM	2.80	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Middle Spring (CO/ME)	0.07 0.07 0.71361	0.000002	Widanagamage et al. (2015)	31.7	#	This studyM	3.63	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Middle Spring (CO/ME1)	0.06 0.05 0.71364	0.000023	Widanagamage et al. (2015)	27.7	#	This studyM	3.74	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Middle Spring (CO/ME2)	0.05 0.04 0.71362	0.000021	Widanagamage et al. (2015)	31.5	#	This studyM	−0.72	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Middle Spring (CO/ME3)	−0.06 0.06 0.71371	0.000016	Widanagamage et al. (2015)	32.6	#	This studyM	1.51	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Middle Spring (CO/ME4)	0.03 0.04 0.71365	0.000015	Widanagamage et al. (2015)	31.4	#	This studyM	1.04	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Drinking Spring (CO/D2)	0.05 0.04 0.71348	0.000015	Widanagamage et al. (2015)	23.1	#	This studyM	0.77	#	This studyT	#	#	#	#	#	#
Doughty Springs, CO: Bathtub Spring (CO/B2)	−0.06 0.03 0.71346	0.000025	Widanagamage et al. (2015)	21.3	#	This studyM	0.44	#	This studyT	#	#	#	#	#	#
Average and SD:	−0.06 0.20 0.71409	0.00254	32.5	5.2	2.8	3.1	32.5	5.2	2.8	3.1					

K = δ$^{88/86}$Sr and 87Sr/86Sr data from IFM-GEOMAR.
C = δ$^{88/86}$Sr and 87Sr/86Sr data from Univ of South Carolina.
T = δ34S from University of Toronto.
TR = δ34S from University of Toronto after reprecipitation (see Methods).
M = δ18O from U.S. Geological Survey.
= external precision for Paytan et al. (2002) 87Sr/86Sr = ± 0.000 02; δ34S standard deviation for CDT 1 sigma = ± 0.15‰.
= δ18O standard deviation on international standards = ± 0.2‰ at Univ. of Toronto.
ave. = average.
SD = standard deviation.
about 200 μg powdered barite was measured into a silver capsule. Using a helium atmosphere, this capsule is pyrolized in a high temperature furnace (Hekatech HT EA) at 1350 °C. The evolved CO was routed through an Ascarite trap, separated on a Molsieve SA, and subsequently introduced via an open split interface (Finnigan Conflon III) into a continuous flow isotope ratio monitoring mass spectrometry system (CFIRM-MS, Finnigan MAT 253). The resulting relative abundances of 18O versus 16O are expressed in delta notation relative to VSMOW (Vienna Standard Mean Ocean Water).

We calibrate our measurements using the following international sulfate standards NBS 127 (+ 8.68% VSMOW, IAEA S05 + 12.13% VSMOW and IAEA S06–11.35% VSMOW, USGS 32 + 25.4% VSMOW; Coplen et al., 2001; Böhle et al., 2003; Brand et al., 2009). We additionally use an in-house synthetic BaSO₄ standard (Sigma-Aldrich, 11.9 ± 0.2% VSMOW) to test for instrument drift and memory effects. Repeated measurements of the in-house standard (typically > 10 per run) and international standards (3–4 standards per run) yield a reproducibility of ± 0.2% (1σ). Five samples were dissolved and re-precipitated prior to analysis to eliminate any potential influence of non-barite components following Breit et al. (1985), see Table 1.

2.4. Strontium isotope analysis

Barite samples were dissolved for Sr isotope analysis using cation exchange resin as a chelation agent following previous work by Paytan et al. (1993). The Sr fraction was separated using Eichrom Sr Spec resin prior to analysis on either the Neptune Plus multicolonlector-inductively coupled mass spectrometer (MC-ICPMS) at the University of South Carolina or the Triton thermal ionization mass spectrometer (TIMS) at IFM-GEOMAR as indicated in Table 1. Measurements of 87Sr/86Sr on the MC-ICPMS had an external precision of better than ± 0.000015 determined by triplicate analyses of samples. Measurements of 87Sr/86Sr on the TIMS had an external precision of ± 0.000009 determined by repeat analyses of IAPSO seawater (n = 10). During analysis, the mean 87Sr/86Sr ratio of IAPSO seawater was 0.709169 (n = 6) and 0.709168 (n = 10) on the MC-ICPMS and TIMS respectively.

The MC-ICPMS detects simultaneously masses required to measure both radiogenic and stable isotopic composition of Sr, with mass discrimination within the instrument corrected using internal and external corrections following Scher et al. (2014). Conventional internal correction was done assuming non-radiogenic 86Sr/88Sr = 0.1194 to calculate radiogenic 87Sr/86Sr (Nier, 1938). Samples and standards were doped with 20 ppb Zr for the external mass bias correction using masses 90 and 91 (i.e., 84Zr and 90Zr). Isobaric interferences of krypton (Kr) on masses 84 and 86 and rubidium (Rb) on mass 87 can result from trace quantities of Kr in the argon supply and incomplete separation of Rb from Sr, therefore masses 82, 83, and 85 (i.e., 82Kr, 83Kr, 85Rb) were measured to correct for these interferences. The sample standard bracketing technique was used to constrain further mass bias during analyses, improving the reproducibility of the measurements (e.g., Kramchaninov et al., 2012; Scher et al., 2014). Typical procedural blanks are < 0.1‰ of Sr in the processed barite, sufficiently low for the sample size prepared (Widanagamage et al., 2015). During analysis, the mean 84Sr/86Sr of seawater was 0.135‰ (2SD = 0.08‰; n = 6) and NIST SRM 987 was 0.00‰ (2SD = 0.07‰; n ≥ 47).

Stable Sr isotope measurements on the TIMS were done following Krabbenhöft et al. (2009) and AlKhatab and Eisenhauer (2017). In summary, the dissolved barite sample is split into two aliquots: one aliquot is spiked using a mixed 87Sr/86Sr double spike and one aliquot is unspiked (used to measure the sample 87Sr/86Sr). The Sr splits of the two aliquots are separated independently using extraction chromatography (Eichrom Sr-Spec resin). The Sr splits are dried down and treated with nitric and H₂O₂ to remove organic matter that elutes from the resin and impacts beam stability. About 500 ng of Sr is loaded onto rhenium filaments along with 1 μl of 1 M phosphoric acid and 1 μl of tantalum activator and analyzed using TIMS. Typical procedural blanks

<table>
<thead>
<tr>
<th>BaSO₄ content</th>
<th>Crystallization rate and form</th>
<th>Crystal size</th>
<th>Crystallization setting and general characteristics</th>
<th>Other: subsurface/ diageneitic</th>
<th>Subsurface/ diageneitic</th>
<th>Oceanic</th>
<th>Continental</th>
<th>Other</th>
<th>Barite formation setting and general characteristics.</th>
<th>Other: subsurface/ diageneitic</th>
<th>Subsurface/ diageneitic</th>
<th>Oceanic</th>
<th>Continental</th>
<th>Other</th>
<th>Barite formation setting and general characteristics.</th>
<th>Other: subsurface/ diageneitic</th>
<th>Subsurface/ diageneitic</th>
<th>Oceanic</th>
<th>Continental</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50% to > 90%</td>
<td>0-10 cm, coarse-grained,</td>
<td>> 100 μm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10%</td>
<td>No</td>
<td>No; root channels</td>
<td>No; not channels</td>
<td>No</td>
<td>No; not channels</td>
<td>No</td>
<td>No; not channels</td>
<td>No</td>
<td>No; not channels</td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 50% to > 90%</td>
<td>Up to 10 cm, coarse-grained,</td>
<td>> 1 mm,</td>
<td>BaSO₄ content</td>
<td>Crystallization rate and form</td>
<td>Crystal size</td>
<td>Crystallization setting and general characteristics</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td>Barite formation setting and general characteristics.</td>
<td>Other: subsurface/ diageneitic</td>
<td>Subsurface/ diageneitic</td>
<td>Oceanic</td>
<td>Continental</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

δδ$_{87}$Sr/86Sr = 0.59‰ (e.g., Pearce et al., 2015).

δδ$_{87}$Sr/86Sr = 0.39‰ (e.g., Pearce et al., 2015).
are < 1 ng of Sr, sufficiently low for the sample size prepared. The mean $\delta^{48/44}$Sr of seawater is 0.391‰ (2 × standard error of the mean (2SEM) = 0.004‰; n = 63) and JCP-1 coral standard is 0.195‰ (2SEM = 0.03‰; n = 87) as reported in AlKhattib and Eisenhauer (2017).

3. Results and discussion

General characteristics of different barite formation settings from the literature and this work are summarized in Table 2 and detailed below. The settings with the highest barite content include some hydrothermal and cold seep marine settings, some springs and soil samples, and other subsurface and diagenetic settings, however the barite in these settings is spatially restricted to the formation site. Barite formed in soils appears to have the highest concentrations of Sr, while pelagic marine barite has typically the lowest Sr content. The smallest barite crystals (typically < 20 μm and between 1 and 5 μm). The radiogenic Sr in pelagic barite records the seawater Sr curve. Radiogenic Sr isotopes in barite in continental settings are often very different from contemporaneous seawater values, tending towards much more radiogenic values. Stable Sr isotopic compositions are variable in all settings expect for marine pelagic barite. Generally, the stable Sr isotopic composition of barite is more negative than contemporaneous seawater Sr due to mass dependent isotopic fractionation of Sr in incorporated in barite. The only settings with known associations with megafauna are in hydrothermal and cold seep marine settings, although association with various filamentous microbes occur in continental spring settings. Sulfur and oxygen isotopes in the marine setting are equivalent to contemporaneous sulfate in seawater while in the subsurface diagenetic settings they are typically heavier. Sulfur and oxygen isotopes in barite from continental settings can be quite different from contemporaneous seawater sulfate.

3.1. Sulfur isotopes

The sulfur isotopic composition of barite samples exhibits a very large range of δ^{34}S values. Cold seep and other types of barite precipitated in the marine environment including diagenetic barite (e.g., barite that forms from pore fluids in marine sediments at anoxic-anoxic boundary post deposition) have δ^{34}S that range from seawater-like values of 21‰ to > 80‰ as seen in Fig. 2a (see also Aguilina et al., 1997; Greinert et al., 2002; Paytan et al., 2002; Feng and Roberts, 2011; Stevens et al., 2015). The samples with elevated δ^{34}S precipitated from sulfate in fluids that have undergone varying degrees of microbial sulfate reduction either by dissimilatory sulfate reduction or anaerobic oxidation of methane associated with sulfate reduction (e.g., Harrison and Thode, 1958; Deuser et al., 2014). The S isotopic fractionation (or shift in δ^{34}S) imparted during microbial sulfate reduction varies between a few ‰ up to 70‰ (Wortmann et al., 2001). The expression of this isotopic fractionation depends chiefly on the sulfate reduction rate (Rees, 1973; Wing and Halsey, 2014) and the sulfate concentration (Seal et al., 2000). The effect of microbial sulfate reduction on the S-isotope ratio of the ambient water from which the barite forms depends on the relative ratios of the sulfate reduction flux versus the mixing rate with unmodified water. These diverse factors contribute to the variable degree of enrichment seen in the barite δ^{34}S values relative to seawater or other solutions from which barite precipitated.

The marine sulfate sulfur isotopic composition (present-day δ^{34}S = 21.5‰; Johnston et al., 2014) reflects the balance of sulfide and sulfate input and removal from the oceans and their isotopic compositions (Wortmann and Paytan, 2012). Pelagic marine barite records seawater sulfate δ^{34}S with little isotopic offset (< 0.4‰; Paytan et al., 1998) and has been useful in reconstructing seawater sulfate δ^{34}S through time (e.g., Paytan et al., 1998, 2004). For the Phanerozoic, seawater sulfate δ^{34}S ranged from around +38‰ to +10‰ (see Gill et al., 2007 and references therein). For the Cenozoic, the range was much smaller, only around 6% between 16‰ and 22‰ (Paytan et al., 1998).

Marine hydrothermal barite δ^{34}S typically falls well below contemporaneous seawater sulfate δ^{34}S due to mixing of sulfate of hydrothermal origin, produced by oxidation of hydrogen sulfide in hydrothermal fluids a process associated with little to no isotopic fractionation (Hannington and Scott, 1988; Seal et al., 2000). The samples from the Guaymas Basin hydrothermal vent area in the Gulf of California have δ^{34}S values higher than seawater (and hydrothermal sulfide) likely due to sulfate from fluids modified when they move through the sediment-covered ridge system where microbial sulfate reduction removes preferentially the light S isotopes as previously described by Paytan et al. (2002) following work by ElsGAARD et al. (1994).

Pedogenic barite in an acid-sulfate soil (Lu'kin Series in south-central Texas, USA) has δ^{34}S values higher than jarosite (KFe$_3$(OH)$_2$(SO$_4$)$_3$) which was found to be the most likely source of S during reducing, inundated, wet conditions deep within the soil (average jarosite δ^{34}S = −12.6‰; Jennings and Driese, 2014). Jennings and Driese (2014) suggest that alternating wet/dry conditions produce changing redox conditions resulting in sulfur-reducing and -oxidizing microbial cycling, with a significant isotopic imprint on the precipitated pedogenic barite due to the large isotopic effects of sulfur-reducing bacteria. This could explain the increase in pedogenic barite δ^{34}S values to +5.5‰ which is > 18‰ higher than the jarosite value (Fig. 2a). Nonetheless, these barite samples exhibit the lowest δ^{34}S values measured in barite samples formed today or in the recent past due to their S source with characteristically low δ^{34}S values.

Continental barites precipitated in or near a sulfidic spring in Oklahoma measured in this study have δ^{34}S values that are also higher than the sulfide emanating from the spring by 6 to 15‰ (spring source δ^{34}S = +27.1‰; Senko et al., 2004) as measured in the barite crust around the spring source and in the adjacent creek, respectively. Previous work concluded that anaerobic, anoxygenic, phototrophic bacteria play a dominant role in oxidizing sulfide to sulfate in the spring (Senko et al., 2004). However, S isotopic fractionation measured in laboratory bacterial experiments show negligible to very small shifts to lower values (< 2.3 to −0.7‰) during S oxidation, depending on bacterial and chemical conditions (Brabec et al., 2012). Therefore, the elevated values of δ^{34}S in barite cannot be the result of S oxidation but must be the result of mixing of various sulfate sources to different degrees resulting in elevated values in barite. Isotopic composition of upcreek sulfate (+ 8.4‰) is consistent with sulfate in nearby Permian evaporite beds (Senko et al., 2004) and is one potential source. Dissolved sulfate measured where the spring drainage reaches the creek was 10.4‰, representing a mixture of spring and creek isotopic compositions (Senko et al., 2004). However, the separated barites measured in this study clearly have the highest δ^{34}S values.

Therefore, we suggest that this is evidence for more complex sulfur cycling in the spring sediment at the site in Oklahoma. The S isotopic composition of the barite provides evidence of sulfate reduction, resulting in isotopically heavier sulfate where the barite precipitates. Sulfate-reduction activity has been detected at the site associated with phototrophic mats (Elshayed et al., 2003). The isotopic effect of sulfate reduction would likely be greater where sulfate concentrations are higher, further from the spring. Furthermore, lower sulfate reduction rates have been shown to have larger isotopic fractionations (Aharon and Fu, 2000) resulting in a stronger influence on the barite δ^{34}S than would be expected based on the cycling of sulfur. Other hydrogeochemical differences between the high dissolved solids in the spring water and the freshwater creek can also influence the observed isotopic offsets between barite and dissolved sulfate.

The other continental sulfidic spring sites measured in this study show less variation in δ^{34}S (< 6‰ within any of the springs, Table 1). It is possible that the barites in the other sites are recording (1) the
isotopic composition of the sulfide in springs, (2) some mixture of S from different sources at the locations, or (3) S cycling within the system including oxidation and reduction, but to a lesser extent than seen in Oklahoma. Additional information such as the spring sulfide δ34S and dissolved sulfate δ34S in the spring water and along the creek would be required to differentiate between these sources and processes influencing their S isotopic composition and that recorded in barite obtained from sediments and crusts. In some cases, it is possible to use additional isotope systems, like oxygen isotopes described below, to distinguish between these sources and processes (Table 2, see discussion below).

3.2. Oxygen isotopes

The largest range of measured values of oxygen isotopes in barite has been recorded in the detailed work of previous studies of marine cold seeps (Aquilina et al., 1997; Greinert et al., 2002; Feng and Roberts, 2011; Stevens et al., 2015). Most of the previous measurements of barite from marine cold seeps have δ18O values greater than seawater sulfate δ18O, indicating the importance of biological sulfate reduction in the crusts or sediment driving both the sulfur and oxygen isotopic composition of the residual sulfate to higher values (Seal et al., 2000). Diagenetic barite from Ocean Drilling Program Site 765 has the lowest δ18O value (4.66‰; Table 1) suggesting it may have precipitated from pore-fluids which differ in their chemistry from present day seawater (Fig. 2c; Paytan et al., 2002). As previously mentioned additional isotope systems could shed light on the pore-water source (Table 2). Indeed, relatively high 87Sr/86Sr indicate the presence of fluid impacted by terrigenous material (see below).

Marine pelagic barite δ18O has been measured and reported using different methods of purification from deep sea sediment (Turchyn and Schrag, 2004; Markovic et al., 2016). We report and discuss briefly the more recent data from Markovic et al. (2016), which shows an offset of 2.0 to 2.5‰ in marine pelagic barite towards lower values when compare to seawater sulfate δ18O (~8.6‰; Johnston et al., 2014). It was suggested that this lower value (Figs. 2, 3) is a result of incorporation of sulfate from oxidized organic S compounds within sinking and decaying organic matter where marine pelagic barite forms (Markovic et al., 2016). Organic S compounds should have δ34S values close to seawater sulfate, however oxygen from seawater can be incorporated into sulfate during oxidation of organic S compounds shifting the barite formed from this sulfate towards lower values (seawater is 0‰ VSMOW), see discussion in Markovic et al. (2016).

Due to methodological differences involved in purifying marine pelagic barite which may alter the original seawater sulfate δ18O signature in barite, it is unclear at this time how exactly seawater sulfate δ18O has varied over the Cenozoic but compared to sulfate δ18O (~8.6‰; Johnston et al., 2014). This was suggested that this lower value (Figs. 2, 3) is a result of incorporation of sulfate from oxidized organic S compounds within sinking and decaying organic matter where marine pelagic barite forms (Markovic et al., 2016). Organic S compounds should have δ34S values close to seawater sulfate, however oxygen from seawater can be incorporated into sulfate during oxidation of organic S compounds shifting the barite formed from this sulfate towards lower values (seawater is 0‰ VSMOW), see discussion in Markovic et al. (2016).
1980). Data over the Phanerozoic obtained from evaporites demonstrate that seawater sulfate $\delta^{18}O$ was not higher by $>10\%$ relative to today’s value (e.g., Claypool et al., 1980).

New data from this study show some marine hydrothermal barite samples can have similar $\delta^{18}O$ values to pelagic and other barite formed in the marine setting (Figs. 2, 3). Marine hydrothermal barite samples also exhibit some values higher than contemporaneous seawater sulfate $\delta^{18}O$ pointing to the potential importance of biological sulfate reduction in this setting.

Pedogenic barite from the Lufkin Series in south-central Texas, USA has slightly higher $\delta^{18}O$ values than the measured exchangeable sulfate, gypsum and jarosite in barite-bearing soil profiles (−3% higher), but $>10\%$ higher than meteoric water (−10% higher than ground-water) (Jennings and Driese, 2014). Together with sulfur isotope data, it was suggested that the source of sulfate in pedogenic barite at this location is from mineral dissolution with slight enrichments in oxygen (and sulfur) isotopes due to microbial sulfate reduction (Jennings and Driese, 2014), which increases both $\delta^{34}S$ and $\delta^{18}O$ of the residual sulfate.

Unlike the pedogenic barite, the source of oxygen is sulfate in the continental sulfidic spring setting measured in this study is likely not dominated by mineral dissolution but originates from water. Previous work concluded that anaerobic, anoxygenic, phototrophic bacteria play a dominant role in oxidizing sulfate to sulfate at the sulfidic spring in Oklahoma (Senko et al., 2004). Oxidation of sulfur this way results in an oxygen isotopic composition of the sulfate derived completely from oxygen in water. Furthermore, sulfate $\delta^{18}O$ can change due to equilibration exchange reactions and/or kinetic effects during sulfate reduction and/or disproportionation, as well as the uptake of ambient $\delta^{18}O$ during abiotic oxidation (Taylor et al., 1984; Fritz et al., 1989; Van Stempvoort and Krouse, 1994; Böttcher et al., 2001a, 2001b, 2005; Brunner et al., 2005; Wortmann et al., 2007; Turchyn et al., 2010; Balci et al., 2012; Antler et al., 2013). Incorporation of some oxygen from air (+23‰; Kroopnick and Craig, 1972) would also drive the oxygen isotopic composition of the barite sulfate to higher values.

Additional data on the $\delta^{18}O$ of the water or dissolved sulfate is not available at any of these continental sulfidic spring sites to confirm the exact origin of $\delta^{18}O$ in these barite samples. The values are much lower than expected if air was the source of oxygen during aerobic oxidation of sulfide. Weathered evaporites (Permian evaporite beds −10‰; Claypool et al., 1980) could provide a source of sulfate and influence the $\delta^{18}O$ in sulfate in the spring drainage and creek in Oklahoma and would be consistent with the sulfur isotope data at this site. The barite crust on the spring has a $\delta^{18}O$ value of 3% much lower than the dissolved sulfate in the drainage (8%) and creek (−10%) suggesting anaerobic, phototrophic oxidation of sulfide by bacteria dominates at the location of the spring while additional source(s) of sulfate are likely present along the drainage and creek. A low $\delta^{18}O$ value for the spring water is expected if the water emanating from the sulfidic springs originates from recirculated meteoric water. All the other sulfidic spring sites we sampled have low barite $\delta^{18}O$ (<4.25‰) most likely imparted by low meteoric water $\delta^{18}O$ values expected for their continental interior setting (Dansgaard, 1964; Bowen and Revenaugh, 2003). The lowest barite $\delta^{18}O$ values measured here are all found in samples from continental sulfidic spring settings (Figs. 2, 3).

3.3. Radiogenic strontium

When plotted with their respective 87Sr/86Sr values (Fig. 2c), the various types of barite can be distinguished. Hydrothermal barites range from near hydrothermal fluid values of relatively unradiogenic 87Sr/86Sr to near modern seawater values depending on the contribution of seawater to their formation. Similarly, cold seep barites are typically only slightly offset from modern seawater (and marine pelagic barite) due to limited contribution of unradiogenic Sr from the oceanic crust (and presumably other dissolved ions) relative to seawater contribution during formation. Some continental fluids also have overlapping 87Sr/86Sr values with seawater hence barite from continental settings (e.g., within the Peru Margin; Aquilina et al., 1997) may also have similar 87Sr/86Sr values to Holocene marine pelagic barite. Over the Phanerozoic, seawater 87Sr/86Sr has varied relatively little (−0.003; Veizer et al., 1999) compared to the variations we see between marine settings and continental sulfidic spring barite (Figs. 2, 3). The extremely high 87Sr/86Sr values of the continental spring settings in Utah and Colorado are not matched in any other setting suggesting 87Sr/86Sr is a good indicator of continental origin of formation fluids (see also discussion in Paytan et al., 2002; Widanagamage et al., 2015). Diagenetic barite (which precipitated in the subsurface from porewater) from Ocean Drilling Program Site 765 has relatively high 87Sr/86Sr (Table 1) indicating the presence of fluid impacted by terrigenous material within the interstitial waters.
3.4. Stable strontium isotopes

Stable Sr isotope measurements (87Sr/86Sr) of marine hydrothermal samples and cold seep barites are indistinguishable and overlap with the range of $^{88/86}$Sr values measured in continental spring barites (Fig. 3). Marine pelagic barite lies at the bottom of the range of values measured in the other marine environments but fall in the middle of the range of $^{88/86}$Sr values measured in continental spring barites (Fig. 3). Therefore, while there is a range in isotope values, no distinct relationship is seen between stable Sr isotope measurements (87Sr/86Sr) and the mode of formation (Table 2).

All barite samples are offset (fractionated) from the fluids in which they precipitate. The degree of isotopic fractionation for $^{87/86}$Sr varies between and within a specific type of barite, except for marine pelagic barite which appears to have a consistent offset from seawater of approximately –0.53‰ in coretop samples from three different locations (Table 1). Two cold seep samples analyzed in this study from San Clemente Basin are also quite similar, but more locations are needed to assess whether the Sr isotopic composition of these types of barite are consistent between sites. Furthermore, the range of apparent isotopic fractionation within a particular setting where multiple sites have been measured is large (~0.6 to 0.0‰) except marine pelagic barite. Interestingly, hydrothermal barites with the lowest 86Sr/88Sr values indicative of a Sr source dominated by hydrothermal fluids (and little influence of seawater Sr) have the highest 87Sr/86Sr values compared to the other hydrothermal barite samples. The combination of the radiogenic and stable Sr isotopic data suggests smaller stable Sr isotopic fractionations for these hydrothermal barites, whereas hydrothermal barite with more seawater-like 87Sr/86Sr values have larger stable Sr isotopic fractionations. The few cold seep and diagenetic barites that have been measured in this study appear to be dominated by seawater Sr and have stable Sr isotopic fractionations similar but not identical to marine pelagic barite.

The controls on Sr isotopic fractionation in all these settings except for the marine pelagic remain fairly unconstrained since there is no clear relationship with Sr in the water in these natural systems as previously concluded (Fig. 3a; Widanagamage et al., 2015). It was suggested that barite in the continental spring setting does not directly precipitate from solution, but heterogeneously within diverse micro-environments which influenced the isotopic fractionation of Sr possibly due to changes in saturation conditions, Sr concentrations and/or precipitation of other minerals like celestine, SrSO₄ (Widanagamage et al., 2015; Singer et al., 2016). This complicates any simple interpretation of $^{87/86}$Sr for samples other than marine pelagic barite, which appears to form under more consistent conditions resulting in a constant offset from seawater. This new data supports conclusions drawn from stable calcium isotopes measurements of marine pelagic barite (Griffith et al., 2008).

It should be noted that even a highly stable sulfate mineral like barite could be susceptible to diagenetic reactions and variations in its stable isotopic composition within marine sediment formed during extreme climatic or environmental perturbations affecting the sediments post-deposition (e.g., ocean acidification at the Paleocene-Eocene Thermal Maximum; Griffith et al., 2015). Stable Ca isotopes appear to be sensitive to these diagenetic processes, whereas radiogenic Sr ratios are not (Griffith et al., 2015). It has been shown that the radiogenic Sr signature reflects the porewater composition dominated by seawater within the upper part of the sedimentary column, even where carbonate is rapidly dissolving (e.g., Fantle, 2015). Investigations of stable Sr isotopes are required to test whether this is also the case for stable Sr isotopes in barite and whether a combination of Ca and Sr stable isotopes measured on the same samples could shed light on processes dominating these isotope effects within marine sediments during extreme perturbations to these systems.

4. Conclusions

The combined use of the investigated metal and nonmetal isotopic measurements in barite could be useful to identify mode of barite mineralization for use in earth science applications including understanding ancient barite deposits. Characteristics of each barite formed in each setting described here are summarized in Table 2. Today, the major flux of Ba out of the oceans is thought to be marine pelagic barite formed in the water column associated with decaying organic matter (Paytan and Kastner, 1996). However, it is generally thought that this mode of barite formation was not dominant in the past when sulfate concentrations where much lower (e.g., Jamieson et al., 2013; Crowe et al., 2014), although recently this has been called into question (Horner et al., 2017). Future workers should carefully prepare and measure these geochemical parameters to test various hypotheses with this framework in mind but be cautioned that there is still a lot of work that can be done to better understand the various modern systems better and apply this knowledge to understand ancient barite deposits and potentially extraterrestrial systems. Additional detailed work using the isotopic composition of other elements, like barium, could help constrain the modern marine Ba cycle with hopes to better understand the past ocean (e.g., Horner et al., 2017; Hsieh and Henderson, 2017) and expand the existing metal isotopes useful for identifying the mode of barite formation.

Declarations of interest

None.

Acknowledgements

The authors would like to thank P. Lonsdale, M. Tivey, and D. Stakes for generously sharing their barite samples with us. Core samples from the Ocean Drilling Program were provide from the IODP Core Repositories. Coretop samples were provided by Scripps Institution of Oceanography and the Marine Geology Repository at Oregon State University. This work was funded in part by the National Science Foundation (NSF) EAR-1053312 to EMG, EAR-1053474 to HDS, and OCE-1259440 to AP. We would like to thank J. Senko and L. Krumholz for assistance in collecting samples in Oklahoma, and G. A. Briggs for granting us access to Doughty Springs, Colorado. The reviews of C. Pearce and an anonymous reviewer helped improve this revised manuscript.

References

Brunner, B., Bernasconi, S.M., 2005. A revised isotope fractionation model for dissim-

