Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2015GB005334

Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados

Chia-Te Chien1, Katherine R. M. Mackey2, Stephanie Dutkiewicz3, Natalie M. Mahowald4, Joseph M. Prospero5, and Adina Paytan1

1Earth and Planetary Sciences Department, University of Santa Cruz, Santa Cruz, California, USA, 2Department of Earth System Science, University of California, Irvine, California, USA, 3Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 4Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA, 5Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA

Abstract Bioassay incubation experiments conducted with nutrients and local atmospheric aerosol amendments indicate that phosphorus (P) availability limited phytoplankton growth in the low-nutrient low-chlorophyll (LNLC) ocean off Barbados. Atmospheric deposition provides a relatively large influx of new nutrients and trace metals to the surface ocean in this region in comparison to other nutrient sources. However, the impact on native phytoplankton is muted due to the high ratio of nitrogen (N) to P (NO3:SRP > 40) and the low P solubility of these aerosols. Atmospheric deposition induces P limitation in this LNLC region by adding more N and iron (Fe) relative to P. This favors the growth of Prochlorococcus, a genus characterized by low P requirements and highly efficient P acquisition mechanisms. A global three-dimensional marine ecosystem model that includes species-specific phytoplankton elemental quotas/stoichiometry and the atmospheric deposition of N, P, and Fe supports this conclusion. Future increases in aerosol N loading may therefore influence phytoplankton community structure in other LNLC areas, thereby affecting the biological pump and associated carbon sequestration.

1. Introduction

Atmospheric deposition is a source of new N, P, and trace metals to the ocean [Duce et al., 1991, 2008; Jickells et al., 2005; Kanakidou et al., 2012; Prospero et al., 1996]. Nutrient inputs from atmospheric deposition have been shown to induce phytoplankton growth [Boyd et al., 1998; Duarte et al., 2006; Erickson et al., 2003], enhance N fixation at some oceanic locations [Mills et al., 2004], impact phytoplankton species dynamics [Guo et al., 2012; Jordi et al., 2012; Mackey et al., 2012b; Paytan et al., 2009], and intensify carbon sequestration via the biological pump [Bresac et al., 2014; Guieu et al., 2014b; Krishnamurthy et al., 2010; Parekh et al., 2006]. Atmospheric deposition of nutrients to the open oligotrophic ocean is particularly important in regions where there is little input from other new nutrient sources such as riverine input, ground water discharge, and sediment resuspension [Jickells et al., 2005]. The bioavailability of nutrients and trace metals from aerosols is directly related to the solubility of these components. Solubility is controlled by aerosol mineral compositions and the physical and chemical characteristics of the aerosol, as well as chemical transformations in the atmosphere during transport [Anderson et al., 2010; Baker et al., 2006b; Hodge et al., 1978; Krishnamurthy et al., 2009; Mackey et al., 2015a, 2012a; Sedwick et al., 2007]. Arid regions of North Africa are the most important mineral dust source to the North Atlantic [Bristow et al., 2010; Hsiao et al., 1997; Schulz et al., 2012]. The solubility of nutrients and trace metals from North African mineral dust is relatively low [Sholkovitz et al., 2012], and it increases only slightly after long-distance transport [Baker et al., 2006a].

Low availability of macronutrients (N, P) and metal micronutrients (Fe, Co) can limit or colimit phytoplankton growth in the ocean [Morel et al., 1994; Saito et al., 2008; Sunda and Huntsman, 1997] and drive genetic adaptation in different environments [Mackey et al., 2015b; Morris et al., 2012]. In contrast, high concentrations of some metals (e.g., Cu) can be toxic to phytoplankton [Jordi et al., 2012; Mann et al., 2002; Paytan et al., 2009; Sunda and Huntsman, 1992]. The supply of new nutrients to the surface ocean from atmospheric deposition has been determined by direct measurements and through modeling [Baker et al., 2003, 2010; Boyd et al., 2010; Krishnamurthy et al., 2010]. The impacts of atmospheric macro- and micronutrient deposition to the ocean have also been studied, particularly with respect to the impacts in iron-limited, high-nutrient
low-chlorophyll (HNLC) areas [Bishop et al., 2002; Boyd et al., 1998; Jickells et al., 2005]. Less work has been done to assess the impacts of deposition in the vast low-nutrient low-chlorophyll (LNLC) regions, which cover ~60% of the global ocean [Giovagnetti et al., 2013; Mackey et al., 2012b; Paytan et al., 2009; Guieu et al., 2014b].

Barbados is a tropical island located at the eastern edge of the oligotrophic Caribbean Sea. The open water primary producers in this region are dominated by small cells, with about 50% of the pigmented biomass contributed by picophytoplankton [Dandonneau et al., 2004]. Prochlorococcus is the most abundant photosynthetic organism in this environment, while picoeukaryotes and Synechococcus cell numbers are usually less than one tenth of Prochlorococcus [Dandonneau et al., 2004]. Large amounts of African dust are deposited in the Caribbean Sea around Barbados throughout the year, with the lowest deposition rates in winter and peak rates in the summer [Trapp et al., 2010]. Barbados receives relatively little anthropogenic air pollution from North America when compared to other subtropical islands such as Bermuda [Savoie et al., 2002]. Accordingly, the open water around Barbados is an excellent location for studying how African dust impacts phytoplankton growth and community dynamics in an oligotrophic LNLC setting.

Understanding how distinct phytoplankton species respond to nutrient loading from atmospheric deposition in Barbados can provide information on the impact of dust deposition on phytoplankton communities in other LNLC areas of the ocean. This is critical not only for our understanding of the current functioning of LNLC regions and the role these regions play in the carbon cycle but also for the projection of future changes, since significant changes in the magnitude of dust distribution [Ginoux et al., 2012; Mahowald et al., 2007; Mahowald et al., 2010; Ward et al., 2014] and future expansion of LNLC regions are predicted [Henson et al., 2010; Steinacher et al., 2010]. In this study we carried out bioassay incubations with locally collected aerosols and native phytoplankton assemblages collected offshore of Barbados to investigate the impact of atmospheric nutrient and trace metal inputs on phytoplankton productivity and community structure. We additionally employed a numerical model to explore how species-specific differences in phytoplankton cellular elemental ratios and regional variation in atmospheric deposition together influence phytoplankton community structure.

2. Observational Material and Methods

2.1. Aerosol Sample Collection and Analysis

Daily high-volume total suspended particles (TSP) filter samples were collected at Ragged Point on the easternmost coast of Barbados [Trapp et al., 2010; Zamora et al., 2013]. The TSP sampler operated only when winds were from the ocean sector to minimize local sources. Several filters collected between November 2009 and August 2010 were selected for the bioassay incubation experiments. Specifically, three sample sets were used in this study representing three seasons; winter, spring, and summer (Table 1). For the winter and summer two filters were combined to supply sufficient material for the experiment. These seasons capture differences in aerosol loading, chemical composition, and source, as described in previous studies from this region [Yu et al., 2015; Jung et al., 2013; Prospero et al., 2014]; however, the differences in the concentration of leachable nutrients and trace metals in the specific samples used were relatively small (see Table 1).

To determine the soluble nutrients and trace metal content of these samples, the filters were extracted by shaking for 1 h in Milli-Q water. The solution was then filtered (0.2 μm polysulfone membrane) and the soluble nutrients and trace metals in the filtrate were measured as described in Chen et al. [2006, 2007] (see Table 1).

2.2. Incubation Setup

Nutrient and aerosol addition bioassay experiments were carried out over 3 days in February 2012, similar to previous work by Paytan et al. [2009] and Mackey et al. [2012a, 2012b]. Surface seawater was collected from offshore (bottom depth >700 m) outside the Bellairs Research Institute at West Barbados (13°11.309′N, 59°38.267′W). Surface water was pumped into acid-cleaned sample-rinsed carboys using a peristaltic pump with acid-washed Teflon tubing and prefiltred through a 20 μm acid-washed Nitex® mesh to remove grazers. The seawater was stored in the dark during transport to the lab (<2 h). Seawater was dispensed into acid-washed and sample-rinsed polycarbonate bottles (500 mL each) and randomly assigned to different treatments (12–20 bottles per treatment). Treatments included single nutrient (N, P, or Fe) additions, as well
as a combination of N and P and a combination of N and Fe, at concentrations representative of deep water in this area (see Table 2). The selected aerosol samples representing the three seasons (described above) were immersed in 50 mL of locally collected seawater (the same water used for the incubation experiment), shaken for 1 h and filtered through a 0.2 μm polysulfone membrane syringe filter. The seawater containing the

Table 1. Nutrients and Trace Metal Concentration in Aerosols Used for the Incubation Experiment and in the Bioassays at t0^a

<table>
<thead>
<tr>
<th>Aerosol Collection Dates</th>
<th>Atmospheric Dust Load (<μg m<sup>-3</sup>)</th>
<th>Weight on Filter (mg cm<sup>-2</sup>)</th>
<th>NO<sub>2</sub> + NO<sub>3</sub></th>
<th>NH<sub>4</sub><sup>b</sup></th>
<th>PO<sub>4</sub></th>
<th>NO<sub>2</sub> + NO<sub>3</sub>P</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11/25/2009 to 11/27/2009</td>
<td>33.9</td>
<td>0.0796</td>
<td>164</td>
<td>182</td>
<td>2.6</td>
<td>64</td>
<td>4.1</td>
<td>1.08</td>
<td>0.32</td>
<td>0.09</td>
<td>0.14</td>
<td>0.0025</td>
<td>0.0003</td>
</tr>
<tr>
<td>2 3/31/2010 to 4/1/2010</td>
<td>91.6</td>
<td>0.1546</td>
<td>231</td>
<td>256</td>
<td>5.4</td>
<td>43</td>
<td>4.2</td>
<td>0.31</td>
<td>0.015</td>
<td>0.03</td>
<td>0.05</td>
<td>0.0008</td>
<td>0.0001</td>
</tr>
<tr>
<td>3 8/17/2009 to 8/19/2009</td>
<td>14.8</td>
<td>0.0902</td>
<td>357</td>
<td>395</td>
<td>2.7</td>
<td>132</td>
<td>2.5</td>
<td>0.28</td>
<td>0.013</td>
<td>0.05</td>
<td>0.09</td>
<td>0.0007</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Bulk Composition (nmol mg⁻¹)

<table>
<thead>
<tr>
<th>Aerosol Collection Dates</th>
<th>NO<sub>2</sub> + NO<sub>3</sub>P</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11/25/2009 to 11/27/2009</td>
<td>27.8</td>
<td>10.1</td>
<td>619</td>
<td>0.228</td>
<td>0.24</td>
<td>0.68</td>
<td>0.003</td>
<td>0.12</td>
</tr>
<tr>
<td>2 3/31/2010 to 4/1/2010</td>
<td>37.0</td>
<td>17.0</td>
<td>913</td>
<td>0.350</td>
<td>0.96</td>
<td>0.58</td>
<td>0.006</td>
<td>0.16</td>
</tr>
<tr>
<td>3 8/17/2009 to 8/19/2009</td>
<td>34.6</td>
<td>12.5</td>
<td>899</td>
<td>0.342</td>
<td>0.66</td>
<td>0.79</td>
<td>0.004</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Solubility (%)

<table>
<thead>
<tr>
<th>Aerosol Collection Dates</th>
<th>NO<sub>2</sub> + NO<sub>3</sub>P</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11/25/2009 to 11/27/2009</td>
<td>9.3</td>
<td>40.5</td>
<td>17.0</td>
<td>36.9</td>
<td>20.7</td>
<td>96</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>2 3/31/2010 to 4/1/2010</td>
<td>14.6</td>
<td>24.7</td>
<td>0.03</td>
<td>4.3</td>
<td>8.6</td>
<td>13</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>3 8/17/2009 to 8/19/2009</td>
<td>7.8</td>
<td>20.0</td>
<td>0.03</td>
<td>3.8</td>
<td>7.6</td>
<td>11.4</td>
<td>16</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Amendments to Incubation Bottles

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>No addition</td>
</tr>
<tr>
<td>NO<sub>3</sub> + NH<sub>4</sub></td>
<td>Deep water (200 m) concentration, 10 μM NO<sub>3</sub> and 0.5 μM NH<sub>4</sub></td>
</tr>
<tr>
<td>PO<sub>4</sub></td>
<td>Deep water (200 m) concentration, 0.5 μM PO<sub>4</sub> As above</td>
</tr>
<tr>
<td>NO<sub>3</sub> + NH<sub>4</sub> + PO<sub>4</sub></td>
<td>Deep water (200 m) concentration, 0.5 μM PO<sub>4</sub> As above</td>
</tr>
<tr>
<td>African dust, low</td>
<td>0.03 mg dust per 500 mL water</td>
</tr>
<tr>
<td>African dust, high</td>
<td>0.5 mg dust per 500 mL water</td>
</tr>
<tr>
<td>Fe + NO<sub>3</sub> + NH<sub>4</sub></td>
<td>Fe 10 nmol/kg (10 times the ambient seawater concentration of ~1 nmol/kg) 10 μM NO<sub>3</sub> and 0.5 μM NH<sub>4</sub></td>
</tr>
</tbody>
</table>

^aBD, below detection limit. Aerosol 1 (winter) has slightly higher trace metals compared to 2 and 3. Aerosol 2 (spring) slightly higher P. Aerosol 3 (summer) lower Mn. Dates are formatted as month/day/year.
^bDust NH₄ were calculated by multiplying N + N by average NH₄ to N + N ratio in Barbados dust described in Zamora et al. [2011].
^cEstimated by using detection limit of PO₄ as the upper limit of PO₄ concentration.
soluble fraction of the aerosols was added to the incubation bottles in volumes that represent aerosol loads during “typical” and “high” deposition events in this region (Table 2 and see also supporting information). High and low deposition rates used for the additions were calculated based on atmospheric deposition estimates from Mahowald et al. [2005]; the “typical” deposition corresponds to annual average dust deposition rates in Barbados during summer, \(\sim10 \text{ g m}^{-2} \text{ yr}^{-1}\), and the high deposition represents extreme dust storms corresponding to a fifteenfold increase in deposition, \(\sim150 \text{ g m}^{-2} \text{ yr}^{-1}\) [Jung et al., 2013]. The amount of dust added simulates the cumulative deposition flux over 20 days to the upper 10 m mixed layer. Details for the calculation of the amount of dust added are provided in the supporting information. Concentrations of nutrients and metals at the start of the incubations, immediately after the amendments were added, are reported in Table 1. A control (no addition, blank filter extract) treatment and procedural blanks (Milli-Q water) were also included. All bottles were incubated in a pool filled with circulating seawater to maintain the local surface ocean temperature. The pool was covered with a neutral density shading screen to reduce light intensity by 50% [Mackey et al., 2012b]. Water samples used for the experiment (preadditions) were collected to characterize the baseline seawater chemistry (five replicates) and three replicate bottles for each treatment were collected immediately after the additions were administered (time zero, t0). The experiment took place over a total of 3 days. Each day at 4 pm, three bottles were randomly selected from each nutrient treatment, while five bottles were randomly selected from each aerosol treatment (e.g., time points t1–t3). Immediately upon collection, each bottle was sampled for chlorophyll \(a\) (Chl \(a\)), flow cytometry, nutrients, and trace metal concentrations (see below).

Statistical significance was tested with one-way analysis of variance (ANOVA) to check for differences between the mean values, and Dunnett’s test was then applied to compare control values with other treatments.

2.3. Nutrient Analyses

Soluble nutrients from the direct extraction of aerosol samples were analyzed on a flow injection autoanalyzer (FIA, Lachat Instruments model QuickChem 8000). Detection limits for soluble reactive phosphorus (SRP) and nitrate plus nitrite (N + N) were 0.1 \(\mu\text{M}\) and 0.29 \(\mu\text{M}\). Ammonium (\(\text{NH}_4^+\)) concentrations were calculated according to the average \(\text{NH}_4^+\) to N + N ratio in dry deposition samples for the region as described in Zamora et al. [2011].

Seawater from each of the retrieved incubation bottles was filtered through a sample-rinsed 0.2 \(\mu\text{m}\) filter (Polyethersulfone, 150 ml Bottle Top Filter, CORNING), collected in acid-washed 50 ml falcon tubes and frozen until nutrients were analyzed. SRP and \(\text{NH}_4^+\) were measured by a continuous flow autoanalyzer (TechniconAutoAnalyzer II™). SRP measurements followed a modification of the molybdenum blue procedure [Bernhardt and Wilhelms, 1967] and \(\text{NH}_4^+\) analysis was done using a method modified from ALPKEM RFA methodology. N + N was analyzed by Alpkem RFA 300 following methods from Armstrong et al. [1967]. Detection limits for SRP, \(N + N\), and \(\text{NH}_4^+\) were 0.012 \(\mu\text{M}\), 0.03 \(\mu\text{M}\), and 0.05 \(\mu\text{M}\), respectively. Our estimates of the detection limits are based on 3 times the lowest resolvable signal from the instrument.

2.4. Trace Metals Analysis

For trace metal analyses 60 ml subsamples of 0.2 \(\mu\text{m}\) filtered water were collected in acid-washed, sample-rinsed LDPE bottles. Seawater samples were acidified to \(\text{pH} < 2.0\) by adding 45 \(\mu\text{L}\) of concentrated trace metal grade \(\text{HNO}_3\) at least 24 h prior to column chemistry. Nobias Chelate-PA1 resin (HITACHI, Japan) was used for seawater matrix removal and trace metal preconcentration [Biller and Bruland, 2012; Sohrin et al., 2008]. Recovery yields are summarized in Table S1 of the supporting information. A 5 ml eluent from each sample was analyzed for a suite of trace metals (Mn, Fe, Co, Ni, Cu,Cd, and Pb) by HR-ICPMS (Thermo Element XR). Samples were introduced into the instrument with a peristaltic pump at a flow rate of \(\sim120 \mu\text{L min}^{-1}\) and passed through an ESI-PC3 Peltier cooled spray chamber before entering the torch. Sample and gas flow rates were optimized for each run; values were 0.75–0.80 ml min\(^{-1}\) and 0.20–0.24 ml min\(^{-1}\), respectively. In, Y, and Sc were added to each sample as internal standards for calibrating sensitivity shifts of the instrument. Method accuracy and precision were assessed relative to Certified Reference Material CASS5 and GEOTRACES SAFe reference seawater (Table S1).

2.5. Chlorophyll \(a\) Concentration and Flow Cytometry

From each bottle, 100 ml of seawater was filtered onto GFF filters, which were frozen in liquid nitrogen and then stored at \(\sim80^\circ\text{C}\) until analyzed. Upon return from the field, samples were extracted for 24 h in the dark at
The contribution of soluble nutrients from atmospheric deposition (based on a deposition model, see below) relative to other sources of nutrients to the surface mixed layer (based on an ocean-ecosystem model) was derived. The resulting impact on phytoplankton dynamics and species distribution was assessed in order to test if results from the incubation bioassays can be reproduced in silico at the location of the experiment. These new model simulations are unique, as we incorporate atmospheric deposition of multiple nutrients, internal cycling of nutrients in the ocean, and taxa-specific quotas for nutrient uptake.

3.1. Atmospheric Deposition Model

Simulations of N, P, and Fe deposition were conducted using the Community Atmospheric Model (CAM4), and online (climate model derived) winds with the slab ocean model [Neale et al., 2013]. Simulations were conducted for 5 years, with the last year used for analysis. By using the prescribed aerosols for radiative transfer calculations, the meteorology in all the simulations was identical. The model simulates three-dimensional transport and wet and dry deposition for gases and aerosols [Lamarque et al., 2011; Mahowald et al., 2006; Rasch et al., 2000]. For N, the CAM-chem model was used [Lamarque et al., 2011], which simulates tropospheric chemistry, including ozone and organic compounds for current and preindustrial emissions using the emission data sets from Lamarque et al. [2010], except for fires. The baseline fire emissions used are the observation-based Global Fire Emission Database version 3 (GFED3) [Randerson et al., 2013; van der Werf et al., 2006]. We use the tuning methodology of Ward et al. [2012] in which, briefly, GFED fire emissions are scaled to ground and space-based observations of aerosol optical depth (AOD) for 14 regions by identifying high-fire emission and low-fire emission months for each region. The tuning factors are applied to all the species emitted by fire, including N, Fe, and P species. P was modeled following Mahowald et al. [2008] with some small differences (see supporting information). Fe is modeled following Luo et al. [2008]. Dust is assumed to contain 3.5% Fe, the same as average crustal abundance [Hans Wedepohl, 1995] and as previously measured on samples from this site [Trapp et al., 2010]. Biomass burning is assumed to have a ratio of 0.2 gFe/g black carbon (BC) in the fine mode, and 1.4 gFe/gBC for the coarse mode [Luo et al., 2008]. Industrial sources of Fe are emitted following Luo et al. [2008]. Source specific solubility was applied to the various P and Fe sources as discussed in the supporting information. The model output also produces the N:P ratio of the soluble fraction of atmospheric deposition to the ocean, which is as previously reported much higher than the Redfield ratio (16N:1P) throughout the ocean [Okin et al., 2011]. More detail on the deposition model is provided in the supporting information. Model-derived atmospheric deposition and associated nutrient and Fe input fluxes, along with dust, nutrient, and trace metal concentrations from the bioassay experiments are listed in Table 3.

3.2. Ocean Model

To investigate the implication of the high N:P ratio dust deposition on marine phytoplankton, and particularly to highlight the unique setting of our study region compared to the rest of the ocean, we employed a global three-dimensional model that includes physical, biogeochemical, ecosystem, and radiative transfer components, as well as an atmospheric deposition component [Dutkiewicz et al., 2015]. The biogeochemical/ecosystem model resolves the cycling of C, P, N, silica (Si), Fe, and oxygen (O) through inorganic, living, dissolved, and particulate organic phases. The biogeochemical and biological tracers are transported and mixed using the MIT general circulation model (MITgcm) [Marshall et al., 1997], which is constrained to be consistent with altimetric and hydrographic observations (the ECCO-GODAE state estimates, [Wunsch and Heimbach, 2007]). This configuration has a
1° × 1° horizontal resolution and 23 vertical levels ranging from 10 m in the surface ocean to 500 m at depth. We resolve two grazers and phytoplankton analogues of Prochlorococcus, Synechococcus, picoeukaryotes, coccolithophores, diatoms, and nitrogen fixing diazotrophs. The phytoplankton types differ in their growth parameters, nutrient requirements, as well as their pigment compositions. The biogeochemical and biological tracers interact through the formation, transformation, and remineralization of organic matter. Excretion and mortality transfer living organic material into sinking particulate and dissolved organic detritus, which are respired back to inorganic forms. Fe chemistry includes complexation and scavenging by particles [Parekh et al., 2005], as well as sedimentary sources following Elrod et al. [2004]. Full equations and parameter values are provided in Dutkiewicz et al. [2015].

In the original model [Dutkiewicz et al., 2015] the only element included in the atmospheric nutrient deposition was Fe. Here we incorporated additional deposition of PO$_4^{3-}$, NO$_x$ (NO$_3^-$ and other oxidized N species) and NH$_4^+$ along with Fe as provided by the deposition model described in section 3.2. We also introduced a crude representation of sedimentation as a constant rate of POM reaching the sea floor.

In the original model [Dutkiewicz et al., 2015] all phytoplankton types, except diazotrophs, had the same C:N:P:Fe stoichiometric ratios. Because a central hypothesis of this study is that species-specific differences in elemental ratios are important for determining nutrient limitation status in this region (i.e., as observed in the incubation experiments), we also altered the model such that the stoichiometry of each phytoplankton functional group reflects literature values of C:N:P (Table S2). In particular, Prochlorococcus has a high N:P ratio (25:1), while Synechococcus has a lower N:P ratio (21:1), though still higher than picoeukaryotes (15:1).

Initial conditions use macronutrient fields (NO$_3^-$, PO$_4^{3-}$ and silicic acid) from the World Ocean Atlas climatology [Garcia et al., 2006], and the Fe, NH$_4^+$, nitrite, dissolved and particulate matter from previous simulations [Dutkiewicz et al., 2015]. The plankton biomass is also initialized from previous model output, divided equally between groups. We ran the simulation forward for 10 years with a repeating generic “year” from the physical ECCO-GODAE products [Wunsch and Heimbach, 2007]. The phytoplankton establish a repeating pattern after about 3 years. A slow drift as deep water nutrient distributions adjust does not significantly change the results over the remaining time period. We show results from two simulations: (1) EXP1, where the elemental stoichiometry was the same between all phytoplankton (except diazotrophs) as in Dutkiewicz et al. [2015] and (2) EXP2, where the phytoplankton types had differing stoichiometry as discussed above (Table S2). We show the difference between the 10th year of each simulation.

In order to investigate the relative contribution of nutrients from different sources in the Atlantic Ocean, we used the model to calculate the relative contribution of N and P from atmospheric deposition to other nutrient inputs, including lateral advection, vertical advection and diffusion, and remineralization of dissolved organic matter (Figure 4).

4. Results

4.1. Aerosol Soluble Nutrient and Trace Metal Concentrations

Seawater soluble nutrients and select trace metal concentrations of the aerosol samples used in the bioassay incubation experiments are shown in Table 1. Aerosol 1 (winter) has slightly higher levels of soluble trace metals compared to aerosol samples 2 (spring) and 3 (summer). Aerosol sample 2 has slightly higher P concentration (5.4 nmol mg$^{-1}$) than aerosol samples 1 (2.6 nmol mg$^{-1}$) and 3 (2.7 nmol mg$^{-1}$). Aerosol 3 has higher N + N and lower Mn compared to aerosols 1 and 2. Overall the differences in the soluble fraction of nutrients and trace metals between these seasonally distinct aerosol samples were small (less than an order
of magnitude). The bulk composition of dust samples was analyzed following a strong acid (HNO₃ and HF) digestion [Morton et al., 2013]. The solubility of P was higher in sample 2 (spring) and ranged from 7.8% to 14.6% among the samples. Overall, trace metal solubility was higher in Aerosol 1 (winter; Table 1).

4.2. Baseline Seawater Chemistry

The seawater used for the experiments had low baseline nutrient concentrations and relatively high Fe (1.09 ± 0.264 nmol kg⁻¹). Mean baseline nutrient concentrations were 0.241 ± 0.098 μM for N + N and 0.228 ± 0.093 μM for NH₄⁺, while SRP was below detection (<12 nM). Trace metal levels were in the same range as previously published data for this region [Fitzsimmons et al., 2013; Mawji et al., 2015; Rijkenberg et al., 2014]. Concentration levels and ratios between nutrients are shown in Table 4 along with previously reported surface seawater concentrations for this region.

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Baseline Seawater (μM) (Mean ± SE)</th>
<th>Caribbean/Tropical Atlantic Seawater</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO₄</td>
<td>BD</td>
<td>0.04–0.14<sup>a</sup></td>
</tr>
<tr>
<td>N + N</td>
<td>0.241 ± 0.098</td>
<td>0–0.94<sup>b</sup></td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>0.228 ± 0.093</td>
<td>0–19.2</td>
</tr>
<tr>
<td>N + N:P</td>
<td>>20<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>NO₃⁻ + NH₄P</td>
<td><39<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Trace metals (nmol/kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.066 ± 0.016</td>
<td>0.01<sup>b</sup></td>
</tr>
<tr>
<td>Cd</td>
<td>0.048 ± 0.026</td>
<td>0.0005<sup>b</sup></td>
</tr>
<tr>
<td>Mn</td>
<td>2.4 ± 0.115</td>
<td>3.19<sup>b</sup></td>
</tr>
<tr>
<td>Fe</td>
<td>1.09 ± 0.264</td>
<td>0.53<sup>b</sup>, 1.31<sup>c</sup></td>
</tr>
<tr>
<td>Co</td>
<td>0.032 ± 0.012</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>1.8 ± 0.078</td>
<td>2.16<sup>b</sup></td>
</tr>
<tr>
<td>Cu</td>
<td>2.3 ± 0.203</td>
<td></td>
</tr>
</tbody>
</table>

^aData from World Ocean Database, nitrogen contains only nitrate value.

^bFrom GEOTRACES GA02 cruise station 33 (same latitude).

^cFitzsimmons et al. [2013].

^eStandard error.

^fEstimated by using the detection limit of PO₄ as the upper limit of PO₄ concentration.

4.3. Chlorophyll a

Chlorophyll a (Chl a) concentration in the seawater sample collected for the experiment (baseline) was 0.19 ± 0.01 (average ± SE) mg m⁻³. After 3 days of incubation Chl a increased twofold to 0.42 ± 0.02 mg m⁻³ in the control bottles. Similar increases in Chl a were observed at day 3 for the addition of N alone and for all dust additions (Figure 1), though not significantly different than the control at p < 0.05. After 3 days of incubation, Chl a in the Fe + N and the high dust additions for all 3 seasons (Spring high, Summer high, and Winter high) were 0.53 ± 0.05, 0.59 ± 0.02, 0.54 ± 0.02, and 0.57 ± 0.02 mg m⁻³, respectively. This was an approximately threefold increase compared to t₀ and was higher than the control values at day 3. The increases compared to those of the control are statistically significant.

![Figure 1. Growth response of phytoplankton under different nutrient addition during three consecutive days. Dashed line at phosphate represents expected response of phytoplankton growth without nitrogen limitation. Note break in scale for Chl a.](image-url)
for Spring high and Winter high ($p = 0.011, 0.034$). Chl a in the N + P treatment showed the largest and most pronounced change, increasing eightfold compared to the baseline level from 0.19 to 1.50 ± 0.10 mg m$^{-3}$. This increase is significantly different than the Chl a increase in the control after 3 days of incubation ($p = 0.00001$). Chl a increased at the same rate in the P alone addition for the first 2 days of incubation (0.6 mg m$^{-3}$ on day 2 increasing threefold compared to the baseline); however, in day 3 the levels decreased sharply and were similar to those of the control at the end of the experiment (Figure 1).

4.4. Phytoplankton Abundance

Cell abundances of *Prochlorococcus*, *Synechococcus*, and picoeukaryotes changed over time in the treatments (Figures 2a–2c). The most abundant species in the baseline water sample was *Prochlorococcus* with $38.4 ± 6.1 \times 10^3$ cells mL$^{-1}$ (91% of cells), followed by *Synechococcus* with an order of magnitude fewer cells ($3.6 ± 0.3 \times 10^3$ cells mL$^{-1}$, 8.5% of cells) and picoeukaryotes comprising only ~0.05% of cells ($0.23 ± 0.04 \times 10^3$ cells mL$^{-1}$). After 3 days of incubation, increases in *Synechococcus* and picoeukaryotes abundance were more pronounced compared to those of *Prochlorococcus* in all treatments that show a response in Chl a (e.g., high dust and N + P). In the N + P treatment, cell numbers of *Synechococcus* and picoeukaryotes increased fivefold to $23.1 ± 5.0 \times 10^3$ cells mL$^{-1}$ and $0.9 ± 0.2 \times 10^3$ cells mL$^{-1}$, respectively. Although *Prochlorococcus* still comprised the largest fraction of the population (70%) they increased to a lesser extent (only 42% to $154.4 ± 13.9 \times 10^3$ cells mL$^{-1}$). After 3 days of incubation the *Synechococcus* and picoeukaryotes cell number in the Fe and high dust additions also increased but only by a factor of 2 compared to the

Figure 2. Growth response of phytoplankton on day 3, control, N + P and PO$_4$ are also reported for day 2. Cell concentrations of (a) *Prochlorococcus*, (b) *Synechococcus*, and (c) picoeukaryotes on day 3 (cell mL$^{-1}$). Relative phytoplankton fluorescence of (d) *Prochlorococcus*, (e) *Synechococcus*, and (f) picoeukaryotes were normalized with 0.75 μm beads’ fluorescence. Note that significance was not determined for the P day 2 treatment as it is not comparable to the other data which use day 3 results; however, day 2 P is significantly different than day 2 control in fluorescence (day 2 data shown in striped bars). Growth condition that were statistically different from the control incubation water at day 3 are marked as “asterisk” for $P < 0.05$ and “cross” for $P = 0.104$.

For more detailed information, please refer to the original publication.
baseline (7.1 \times 10^3 to 8.4 \times 10^3 \text{ cells mL}^{-1} \text{C}0^{-1} and 0.43 \times 10^3 to 0.46 \times 10^3 \text{ cells mL}^{-1} \text{C}0^{-1}). Unlike Synechococcus and picoeukaryotes, cell levels of Prochlorococcus on day 3 in these treatments did not show a significant difference when compared with the control, with numbers varying from 25.5 \times 10^3 \text{ cells mL}^{-1} \text{C}0^{-1} to 54.4 \text{ cells mL}^{-1} \text{C}0^{-1}.

Fluorescence per cell values (normalized to 0.75 \mu \text{m beads}) in the control incubation at day 3 for Prochlorococcus, Synechococcus, and picoeukaryotes are 0.63, 18.92, and 119.05, respectively. In the N + P treatment, fluorescence per cell almost doubled in Synechococcus and picoeukaryotes (30.5 and 199), while the response was small in Prochlorococcus (0.75). Day 3 fluorescence values in the P treatment are close to those in the control (similar to Chl a), however, day 2 levels for Synechococcus and picoeukaryotes are 32.7 and 185.5, which are similar to those of the N + P treatment (31.7 and 185.2) (Figures 2d–2f).

Interestingly, the response observed in the dust amendments was limited to the high dust additions, and even that response was relatively small when compared to treatments where P was added. Specifically, addition of locally collected aerosols at rates similar to average deposition in this area did not trigger much growth of Synechococcus, picoeukaryotes, or Prochlorococcus, and even introduction at levels equivalent to those expected after 20 days of heavy dust storms resulted in a relatively small increase in Chl a, which is consistent with previous incubation experiments where high amounts of Saharan dust (2 mg L\(^{-1}\)) were added and the primary response measured was bacterial production [Maranon et al., 2010]. This indicates that even extremely high levels of atmospheric deposition are not sufficient to completely alleviate the P limitation and induce substantial autotrophic growth in this region of the ocean.

4.5. Deposition Model

Annually averaged deposition maps of N, P, and Fe based on aerosol loads (dust and anthropogenic emissions) and specific solubility of each element, are shown in Figure 3A; a large spatial variability is simulated, consistent with observations e.g., Baker and Croot, 2010; Baker et al., 2010; Dentener et al., 2006; Mahowald et al., 2008, 2009; Sholkovitz et al., 2012]. The N:P and N:Fe ratio based on these deposition fields are calculated and shown in Figure 3b. The ratio of N:P in the soluble fraction of aerosols (~50:1 to >1000:1; Figure 3b) is much higher than the ratio typically required by phytoplankton (16:1) [Okin et al., 2011]. In particular, some of the highest N:P deposition ratios are found in the central North Atlantic subtropical gyre.

4.6. Ocean Model

Our ocean model shows that the N enrichment in dust and the high rates of deposition around the Caribbean, particularly around our sampling area, result in a relatively higher contribution of atmospheric N compared to
other sources of nutrients (advection, diffusion, and remineralization of organic matter) (Figure 4). This tends to shift the total nutrient input ratio to the surface waters in this region toward higher N:P ratio, and toward P limitation. This regional increase in the relative contribution of aerosol nutrients to the combined nutrient inputs in the surface layer is also consistent with calculations using upwelling found by Oschlies and Garcon [1998] (Table 5).

The phytoplankton community in the North Atlantic subtropical gyre is dominated by picophytoplankton (Figures 5a–5c) in both model experiments (and the original model [Dutkiewicz et al., 2015]). However, there is a substantial difference (Figures 5d–5f) in the relative abundance of the three picophytoplankton groups between EXP1 (where species-specific elemental ratios were all the same except for Trichodesmium) and EXP2 (where species-specific elemental ratios were used). In particular, there is a significant difference in the region where the influence of atmospheric deposition with high N:P ratio is highest compared to other nutrient sources (upwelling, advection) (Figure 4). In this P-limited LNLC region, Prochlorococcus becomes more abundant when the model accounts for its low P requirements in EXP2 compared to EXP1. Specifically, with their lower P requirements as simulated in EXP2 relative to EXP1, Prochlorococcus biomass increases (see red box in Figure 5) in the region with the highest aerosol N:P ratios. On the other hand, neither Synechococcus nor picoeukaryotes, with their lower N:P requirements, have any benefit in this mostly oligotrophic and P-limited region. However, on the edge of the gyre, we find the opposite response. Here where N is limiting, the high N:P quota of Prochlorococcus is not beneficial and Synechococcus increases in biomass at the expense of Prochlorococcus.

The main result from the difference between the two simulations is that the combination of including N and P in addition to Fe for the atmospheric deposition and using taxa-specific nutrient elemental ratios results in significant changes in phytoplankton species distribution. Specifically, Prochlorococcus, with its low P

Table 5. Relative Contribution of Nutrient Sources in Each Region of Atlantic Ocean

<table>
<thead>
<tr>
<th>Region</th>
<th>Upwelling Fluxes (mmol m⁻² yr⁻¹)</th>
<th>Dust Fluxes (mmol m⁻² yr⁻¹)</th>
<th>Dust flux to upwelling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO₃</td>
<td>NO₃PO₄</td>
<td>PO₄</td>
</tr>
<tr>
<td>Subpolar 50 N–65 N</td>
<td>410</td>
<td>15.2</td>
<td>27.0</td>
</tr>
<tr>
<td>Midlatitude 30 N–50 N</td>
<td>580</td>
<td>20.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Subtropical gyre 12 N–30 N, 70 W–22 W</td>
<td>47</td>
<td>25.4</td>
<td>1.85</td>
</tr>
<tr>
<td>Tropical 8 S–8 N</td>
<td>370</td>
<td>14.9</td>
<td>24.9</td>
</tr>
<tr>
<td>Barbados (13.1 N, 59.5 W)</td>
<td>47</td>
<td>25.4</td>
<td>1.85</td>
</tr>
</tbody>
</table>

N and P fluxes are from Zamora et al. [2013].
NO₃ upwelling fluxes are from Oschlies and Garcon [1998, Table 1].
N to P ratios are median value of N:P at depth 150 m from GEOTRACES cruise GA02.
Dust fluxes are from model results described in this paper, values are average fluxes of different regions defined in Oschlies and Garcon [1998].
requirement relative to N (Table S2), thrive and become more prolific in the high N:P ratio regions, particularly in our study area.

5. Discussion

5.1. Nutrient Limitation in the Caribbean Sea

The Caribbean Sea comprises a significant fraction of the western North Atlantic Ocean and generally fluctuates little in its hydrographic conditions [Muller-Karger et al., 1988]. The area is characterized by relatively low productivity, low nutrients, and low chlorophyll levels [Garcia et al., 2010]. Previous studies, primarily from HNLC areas of the ocean, show that low atmospheric deposition rates and low Fe availability limit ocean productivity [Bishop et al., 2002; Boyd et al., 1998; Erickson et al., 2003; Jickells et al., 2005]. However, the role atmospheric deposition plays in influencing phytoplankton dynamics in LNLC regions has only recently begun to receive more attention [Giovagnetti et al., 2013; Guieu et al., 2014a; Mackey et al., 2012b; Paytan et al., 2009; Wuttig et al., 2013]. Specifically, deposition rates are high in the Barbados region, yet LNLC conditions persist. High deposition rates are expected to supply new nutrients and sustain relatively high levels of productivity downwind of high deposition areas, yet productivity and Chl a concentrations in the euphotic zone of the LNLN-highest dust deposition areas in general, and at our study site off Barbados in particular, are relatively low (Figure 5) [Volpe et al., 2009].

To understand this observation, it is important to determine what limits productivity in the surface waters of the Caribbean Sea, as well as the role nutrients supplied from aerosol deposition play in such systems. In our incubation experiments, N addition (as a mixture of NO₃⁻ and NH₄⁺) induced minimal response in Chl a or species abundance relative to the control, suggesting that N was not the limiting nutrient in the water at the time our samples were collected. The largest Chl a increase was obtained with treatments that received P addition as N + P or P alone (during the first 2 days), indicating that P was limiting growth in this region during our experiment (Figure 1). Indeed, measurable net P drawdown, calculated by the difference in SRP concentrations between t₀ and t₃, was only seen in the treatments that received P additions (Figure S2); N
drawdown was also seen in these treatments, consistent with growth. The sharp decline in Chl a after day 2 and the associated decline in phytoplankton abundance in the P alone treatment indicates that N was also in relatively short supply; as soon as the P was utilized, colimitation with respect to N and P developed. While our experiment does not provide direct evidence for the change toward N limitation following the drawdown of P in the P alone treatment, this explanation is consistent with the negligible N drawdown in the P addition experiment between days 2 and 3, and with the findings of other studies in this region [C. M. Moore et al., 2013]. Indeed, P limitation has been suggested for the western North Atlantic based on enzyme activities [Ammerman et al., 2003; Lomas et al., 2004], low SRP concentrations [Wu et al., 2000], high thermocline N:P ratios [Fanning, 1992], short P turnover times [Sohm and Capone, 2010], fast uptake rates [Sohm and Capone, 2006], extensive utilization of dissolved organic P [Lomas et al., 2010; McLaughlin et al., 2013], low abundance of phospholipids in resident phytoplankton [Van Mooy et al., 2009], efficient physiological P acquisition mechanisms [Martiny et al., 2006; Scanlan and Wilson, 1999] and the presence of intracellular polyphosphate [Martín et al., 2014]. Phosphorus limitation in this region is also consistent with previous model results [Krishnamurthy et al., 2007]. For example, both the Marine Ecosystem Dynamics and Biogeochemical Cycling Community Earth System Model (CESM1(BGC) [J. K. Moore et al., 2013] and the MITgcm Darwin Project model (this study, as well as Dutkiewicz et al. [2014]) identify this region as one of the few areas of P limitation in the open ocean, particularly for diazotrophs but also for other phytoplankton. The decline in Chl a observed in the P addition experiments once N was depleted suggests that N is also in low abundance and may explain why other studies have identified this area as N and P limited [C. M. Moore et al., 2013]. The timing of the Chl a decline in the P alone addition (low N:P ratio) is also consistent with previous work which demonstrates that the length of time some Prochlorococcus strains (the most abundant photosynthetic organism in the incubation water) stay in stationary phase (i.e., how quickly they crash) is a function of the N:P ratio. Specifically, Moore et al. [2002] show that some strains (NATL1, NATL2, MIT9211, and MIT9215) crashed within 2 days when N was limited.

Bacterial growth and respiration have also been shown to be stimulated by Saharan dust [Pulido-Villena et al., 2014] and SRP additions [Cotner et al., 1997; Obernosterer et al., 2003] and could have contributed to P drawdown in the P addition experiments, although we did not measure changes in bacterial productivity or abundance. The diazotrophic cyanobacterium Trichodesmium spp. also appears to be P limited in this basin [Sahudo-Wilhelmy et al., 2001; Sohm et al., 2008] but was not detected in our samples. Note that the experimental design is different from the experiment carried out by Thingstad et al. [2005] in which grazing was implicated as the cause for Chl a decline, as we filtered out grazers larger than 20 μm before incubation. While smaller grazers could pass through the mesh in this experiment, it seems unlikely that they would cause a decline in Chl a only in the P alone treatment, but not in the N + P treatment (Figure 1). Thus our incubation experiments are consistent with the currently available body of research that indicates that biomass growth in this region is limited by P and that different organisms within the community could be colimited by N and P.

5.2. Taxa-Specific Responses to Nutrient Additions

In our study, Chl a concentrations by day 2 show a substantial increase in treatments to which P was added (and not with other additions); however, flow cytometry data suggest that not all phytoplankton taxa responded similarly. Synechococcus and picoeukaryote populations both increased in cell number and fluorescence (Figures 2a and 2b). Synechococcus showed the fastest response, increasing in the P alone treatment after only 2 days of incubation (Figure 2a). Similar increases in Synechococcus have been recorded in incubations from this region before [Moore et al., 2008]. Prochlorococcus, however, shows a much smaller increase in both cell numbers and fluorescence relative to the control. Prochlorococcus was the most abundant photosynthetic organism in the water at the time of our sampling, and they did not respond strongly to any of the amendments in the bioassay incubation. This suggests that Prochlorococcus is more adapted to survive in the low nutrient, P-deficient waters of the western Tropical Atlantic Ocean and that they have acclimatized for coping with low P concentrations and high N:P ratio conditions. Higher surface area to volume ratio, increased nutrient uptake efficiency [C. M. Moore et al., 2013], lower P requirements [Morris et al., 2012; Van Mooy et al., 2006], and efficient P acquisition, regulation, and utilization pathways [Martiny et al., 2009] all give Prochlorococcus an advantage in low P waters. These mechanisms include using less P in cellular building blocks, storing P intracellularly as storage compounds to be reused later (e.g., polyphosphate).
[Martin et al., 2014], using organic P compounds, and having efficient P acquisition abilities (transporters). When P or N + P were added in our experiments, Synechococcus and picocyanobacteria, which did not bloom under the natural P-limited conditions, were able to grow faster because the added P shifted the nutrient regime away from P limitation, thereby opening a new niche. This suggests that addition of P in the incubation increased biomass by enhancing the growth rates of Synechococcus and picocyanobacteria while providing little immediate benefit for Prochlorococcus (Figure 2). Rather, Prochlorococcus initially dominated the community because it is adapted to the naturally P-limited conditions, and the cells were likely already operating at their maximum growth rate. Moreover, the higher proportion of NH$_4^+$ relative to NO$_3^-$ in aerosols in this region may benefit Prochlorococcus, due to its high affinity NH$_4^+$ transporters and preference for NH$_4^+$ [García-Fernández et al., 2004].

In this area, despite high atmospheric input of nutrients, P requirements for the other taxa are not met. To test if our conclusion (e.g., that relative nutrient availabilities dictate taxa distribution favoring Prochlorococcus in regions of low P and high N:P ratio) is consistent with global coupled atmosphere–ocean–ecosystem models, we used the MITgcm Darwin Project model as described above, specifically testing the effect of taxon-specific nutrient ratios and quotas. The model results were consistent with the bioassay results where Synechococcus and picocyanobacteria were P limited (Figure 2), and where Prochlorococcus dominates due to low P requirements and low P availability that is driven by atmospheric deposition in our study region (red box in Figure 5). The Mediterranean Sea, another LNLC area with high dust deposition and low P availability, showed a similar response to our study area, but other ocean regions did not. This was also true in a further experiment (see Figure S3) where we removed the dust supply of N and P; Prochlorococcus was the only species affected.

5.3. Atmospheric Deposition Control of Nutrient Ratios and Species Abundance

The ratio of N + N to SRP in aerosol samples used in our experiment ranged from 43:1 in the spring to 132:1 in summer, much higher than Redfield ratio (16:1). The ratios in aerosols are even higher when considering NO$_3^-$ and NH$_4^+$ together: both are typically present at similar concentrations in aerosols [Zamora et al., 2011]. Both N species are bio-available and utilized by phytoplankton. These ratios are consistent with the high ratios previously reported for aerosols collected in this region over the past two decades [Baker et al., 2010; Zamora et al., 2013] and with the relatively low phosphate solubility of African dust over this region (~8%) [Zamora et al., 2013]. This high N:P ratio in the soluble fraction of atmospheric deposition throughout the world’s ocean is simulated in the atmospheric deposition models we used (Figure 3b) and fits other model predictions [Okin et al., 2011] and many observations of aerosol chemistry throughout the world [Baker et al., 2003; Baker et al., 2007; Chen et al., 2007; Mackey et al., 2013; Markaki et al., 2003; Paytan et al., 2009; Srinivas and Sarin, 2013]. Although we used only dry deposition in our incubation experiment, similarly high N:P values have been reported for wet deposition in this region [Zamora et al., 2013] and elsewhere [Altieri et al., 2009; Markaki et al., 2003; Ö兹soy, 2003; Williams et al., 1997; Zhang et al., 2008].

We argue that in this specific region the high N:P ratio in atmospheric deposition sustains the observed P limitation. This is because the N supplied by atmospheric deposition, in this region of relatively high atmospheric deposition and limited nutrient supply from other sources, constitutes a relatively large fraction of the total new N input to the euphotic zone (Table 5 and Figure 4), thereby maintaining a high N:P ratio in the surface ocean. Other external input sources (e.g., upwelling, river plumes) have much lower N:P ratios. Prochlorococcus, with its low P requirement and efficient P utilization has an advantage in areas of low P and high N:P ratios. Diazotrophs may be P limited and are less competitive in high N:P regions [Blain et al., 2015; Flohr et al., 2014], and this enhances the effect that atmospheric deposition has in controlling surface N:P ratios. High N:P ratios in the euphotic zone and in sinking particulate matter, along with a positive N$^+$ (N$^+$ = N − 16P + 2.90 μmol kg$^{-1}$0.87), see Gruber and Sarmiento [1997]) for subsurface water in this region (and throughout the North Atlantic subtropical thermocline) have also been observed [Hansell and Follows, 2008; Hansell et al., 2004, 2007] and are consistent with addition of more N relative to P. The idea that atmospheric deposition contributes to high
NP ratios in this region is also consistent with the observed relationship between excess N in the water column of the Sargasso Sea and the North Atlantic Oscillation (NAO) [Bates and Hansell, 2004], because the magnitude and timing of atmospheric transport to the region is affected by NAO-related changes in atmospheric circulation. The high excess N in the eastern tropical South Atlantic [Hansell et al., 2004] could also be explained by high atmospheric deposition rates off the west coast of Africa.

The potential role of atmospheric deposition as a new N source has been previously recognized [Duce et al., 2008]; however, it was suggested that due to low atmospheric deposition fluxes relative to other nutrient sources, atmospheric deposition would have relatively little direct impact on open ocean biota [Knap et al., 1986; Krishnamurthy et al., 2009; Michaels et al., 1993]. Moreover, most previous studies have attributed the excess N, high NP, and low δ15N signatures in NO3− seen in this region to nitrogen fixation [Hansell et al., 2004; Knapp et al., 2008; Wu et al., 2000]. The contributions from atmospheric N deposition and N2 fixation have similar biogeochemical signatures (low N isotope and high NP ratios) and thus are difficult to differentiate [Hansell et al., 2007; Knapp et al., 2010]. Our incubation results, however, suggest that N from atmospheric deposition, or more specifically the high NP ratio in atmospheric deposition, could enable Prochlorococcus to outcompete diazotrophs. In fact, the high NP ratios (and low P concentrations) could in themselves limit the activity of diazotrophs [Mills et al., 2004; Sáñudo-Wilhelmy et al., 2001; Voss et al., 2004]; hence, it is likely that at least part of the observed excess N in the subsurface and low δ15N of NO3− in this region is a result of direct input of N from atmospheric deposition sources.

Atmospheric deposition of N, P, and Fe (Figure 3a), as well as the associated NP and N:Fe ratios (Figure 3b), vary considerably in space. This is due to the different sources of these elements in aerosols. The relatively high contribution of aeolian (mineral dust) deposition in the North Atlantic, and specifically in our study site (where other new N sources are small), results in both a high NP ratio and a high excess N input (relative to P) to the euphotic zone (Table 5). Our model results, which take into account variability in the stoichiometry of nutrient supply as well as phytoplankton group specific demand, indicate that aerosol deposition not only impacts but plays a major role in phytoplankton community structure in the LNLC regions of the west tropical North Atlantic Ocean by controlling nutrient distribution in surface seawater, particularly by maintaining high NP ratios and high Fe. Specifically, including phytoplankton taxon-specific C:N:P in conjunction with N, P, and Fe in atmospheric deposition had a large impact on the distributions of phytoplankton taxa, as shown by comparing these results to model outputs that do not include variable nutrient stoichiometry demand (Figure 5). The largest impact in our region is an increase in Prochlorococcus relative to higher-latitude waters. Previous model studies [e.g., Krishnamurthy et al., 2010] have shown that the addition of aeolian N and P sources does not produce a large change in global productivity or phytoplankton distributions (see supporting information Figure S3). However, here we show that there is a change in phytoplankton community structure in the North Atlantic subtropical gyre, specifically in the region where the contribution of atmospheric nutrients is greatest relative to other sources. Here Prochlorococcus benefits because of its low P requirement relative to N, and as a result their abundance is higher, particularly in the central portion of the region (Figure 5d).

6. Summary and Implications

Direct observations and modeling results suggest that high atmospheric deposition rates and NP ratios in the Caribbean Sea create conditions that favor phytoplankton with low P requirements and efficient P acquisition strategies, such as Prochlorococcus. This work provides insight into the observation that the southwestern North Atlantic is characterized by relatively low productivity and high abundance of Prochlorococcus and demonstrates the impact of atmospheric nutrients in this LNLC area. Similar conditions prevail in the Mediterranean Sea and the Gulf of Aqaba, Red Sea, where Prochlorococcus is also prevalent. Models predict that future climate will enhance ocean stratification [Sarmiento et al., 2004; Steinacher et al., 2010], and N loading in aerosols is also expected to increase [Duce et al., 2008; Gruber and Galloway, 2008; Krishnamurthy et al., 2009]. Based on our observations, this may impact phytoplankton community structure and productivity in some regions of the ocean, most notably regions that are close to being P limited. Indeed a recent study has already detected changes that are consistent with higher anthropogenic N deposition and expansion of P limitation [Kim et al., 2014]. This may also have cascading impacts on other processes such as carbon export to depth because particle sinking rates in systems characterized by small cells are slow [Bach et al., 2012].
Acknowledgments

We thank the Bellairs Research Institute for providing accommodation, laboratory space, and supplies in Barbados. This work was supported by NSF-OCE grant 0850467 to Adina Paytan. The data supporting this work are listed in the tables, figures, and supporting information.

References

Ammerman, J. W., R. R. Hood, D. A. Case, and J. B. Cotner (2003), Phosphorus deficiency in the Atlantic: An emerging paradigm in oceano-

Bressac, M., C. Guieu, D. Doxaran, F. Bourrin, K. Desboeufs, N. Leblond, and C. Ridame (2014), Quanti-

