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Hydrothermal circulation on the sea floor at mid-ocean ridge
flanks extracts ∼30% of heat from the oceanic lithosphere
on a global basis1 and affects numerous tectonic, magmatic
and biogeochemical processes2–4. However, the magnitude,
mechanisms and implications of regional-scale fluid and heat
flow on mid-ocean ridge flanks are poorly understood. Here
we analyse swath-map, seismic and sea-floor heat-flux data to
quantify the heat and fluid discharge through a few widely
spaced basement outcrops on the Cocos Plate. Heat removed
by conduction from a 14,500 square kilometre region of the
sea floor is 60–90% lower than that predicted by lithospheric
cooling models. This implies that a substantial portion of the
heat is extracted by advection, which requires fluid discharge
of 4–80 × 103 litres per second. The heat output of individual
discharging outcrops is inferred to be comparable to that from
black-smoker vent fields seen on mid-ocean ridges. Our analysis
shows that hydrothermal circulation on mid-ocean ridge flanks
through widely spaced outcrops can extract a large fraction of
lithospheric heat. This circulation requires a very high crustal
permeability at a regional scale. Focused flows of warm, nutrient-
rich hydrothermal fluid may enhance sub-seafloor microbial
habitats5,6 and enable direct sampling of these systems.

Global estimates of heat, fluid and solute fluxes through
mid-ocean ridge flanks have been made using thermal and
chemical constraints7, but regional fluxes and the properties
and processes that control them are poorly understood because
of a lack of collocated, high-resolution data sets. Basement
outcrops can facilitate advective extraction of lithospheric heat
by providing highly permeable conduits that enable fluids to
bypass low-permeability sediments8–11. The driving forces that
sustain outcrop-to-outcrop discharge are limited to tens to a
few hundreds of kilopascals, based largely on the difference
between fluid pressures at recharging (cool) and discharging
(warm) zones in the crust. Modest driving forces and the long
distances between recharge and discharge sites require high crustal
permeability9,11,12, consistent with borehole hydrogeological, tidal,
and seismic analyses13,14.

Previous studies of mid-ocean ridge-flank hydrothermal fluxes
focused on individual features (local scale)10,11,15 or composite data
sets from many areas (global scale)16, but no earlier studies have
shown that widely spaced basement outcrops can mine a large
fraction of lithospheric heat on a regional scale. Collocated seafloor
bathymetric, seismic-reflection and heat-flux data from a large area
of 18–24 million-year-old (Myr) sea floor of the eastern Pacific
Ocean, on the Cocos Plate seaward of the Middle America Trench
(Fig. 1), provide the foundation for a quantitative assessment of
advective heat and fluid fluxes on a regional basis.

The methods used to collect and process swath-map, seismic
and seafloor heat-flux data from this area are described in detail
elsewhere17. Swath-mapping across a 50,000 km2 region achieved
40% spatial coverage, and is overlain on complete bathymetric data
coverage from satellite gravimetry18 (Fig. 1a). Multichannel seismic
reflection data were acquired along 3,000 km of profiles. Seafloor
heat-flux data were acquired with a 3.5 m, 11-sensor, violin-bow
multipenetration probe with in situ thermal conductivity and real-
time data telemetry, and with three to five autonomous outrigger
probes mounted on core barrels8,17. Heat-flux, seismic and nearby
drill-core data19 were combined to extrapolate surface thermal
conditions to the sediment–basement interface to map spatial
variations in upper basement temperatures (these interpretations
and the complete heat-flux data set are provided as Supplementary
Information, Table S1).

The Cocos Plate has a complex tectonic history in the
survey area, where it comprises lithosphere generated at the
fast-spreading East Pacific Rise (EPR) and the medium-spreading
Cocos-Nazca Spreading Centre (CNS), separated by a plate suture20

(Fig. 1b). Drilling and seismic data from this area show that
sediment is typically 400–500 m thick, except where disrupted by
seamounts and other basement outcrops, and comprises mainly
pelagic and hemipelagic material8,17,21. Basement outcrops are
unevenly distributed regionally. Outcrops are relatively common
on EPR-generated sea floor northwest of the plate suture (Fig. 1),
ranging in diameter from hundreds to thousands of metres
(Table 1), and are typically separated by 20–50 km. In contrast,
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Figure 1 Regional bathymetry and heat flux. a, Bathymetry and mapped basement outcrops. Bathymetric data are from swath-mapping and satellite gravimetry. Circles
correspond to outcrops. The dashed and solid grey line delineates the boundary between 14,500 km2 cooler and warmer parts of the plate. b, Cartoon illustrating the cool
region (dark grey), heat flux (colour-coded circles), mapped basement outcrops (black ovals) and major tectonic boundaries. EPR = lithosphere generated at the East Pacific
Rise. CNS = lithosphere generated at the Cocos-Nazca Spreading Centre. The plate suture between EPR- and CNS-generated lithosphere is defined by a triple junction trace
and a fracture zone.

no basement outcrops are evident on CNS-generated sea floor
southeast and adjacent to the plate suture, or on EPR-generated sea
floor immediately to the west (Fig. 1).

‘Warm’ and ‘cool’ parts of the Cocos Plate are delineated by
327 high-quality heat-flux measurements collocated with seismic
reflection profiles (Fig. 1), and augmented by scattered heat-flux
data from earlier surveys22. The mean seafloor heat flux through
the warm part of the plate is consistent with lithospheric reference
models, 97–120 milliwatts per square metre for 18–24 Myr sea
floor1 (Figs 1 and 2a). In contrast, the seafloor heat flux through
the cool part of the plate (area shaded grey in Fig. 1b) is typically
10–40 mW m−2, just 10–40% of lithospheric predictions (Fig. 2a).
The thermal transition between warm and cool areas is abrupt, only
a few kilometres wide, consistent with advective heat extraction
from the upper crust on the cool side of the plate8,17.

Ten seamounts and other basement outcrops mapped within
the cool part of the survey area collectively comprise ∼260 km2

of exposed basement (Fig. 1, Table 1). Heat-flux and seismic
surveys oriented radially away from outcrops indicate that some
enable hydrothermal recharge whereas others enable hydrothermal
discharge17 (Table 1). Fluid recharge is indicated by a decrease in
seafloor heat flux and a downward sweeping of isotherms where
sediment thins in proximity to an outcrop. In contrast, fluid
discharge results in extremely high seafloor heat flux (sometimes

more than 1 W m−2) and an upward sweeping of isotherms
adjacent to exposed basement. Data analysed in the present
study, similar data collected from a younger mid-ocean ridge
flank where recharge and discharge are guided by basement
outcrops9,23 and results of numerical models suggest that discharge
is favoured through smaller outcrops9,11,23, probably because it is
easier to maintain warm conditions within smaller features during
fluid ascent.

We define a 14,500 km2 area of cool, 21–24 Myr lithosphere
on the EPR side of the Cocos Plate, with geographic boundaries
comprising the trench to the northeast, a thermal transition
to the southeast and the limits of high-resolution thermal
surveys to the north and west. We infer that lithospheric heat
advected from the cool part of the survey area is discharged
through basement outcrops within this area8,17. The northern
and western limits of the cool area are placed equidistant
between basement outcrops within and outside the cool area;
if heat advected from the cool area flowed through outcrops
outside this area, then the regional advective heat loss and
power output of each discharging outcrop would be greater than
those indicated by the calculations that follow. In fact, scattered
heat-flux measurements collected during earlier surveys22 beyond
the northern and western limits of the study area suggest that
lithospheric cooling extends to a much larger region. This implies
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Table 1 Summary of basement-outcrop characteristics

Outcrop∗ Diameter (km)† Height (m)‡ Heat-flux profiles§

Fuente 4.8 600 3-R, 1-D
Dorado 0.4 150 2-D
Tengosed 8.8 880 2-R
La Misma 2.8 40 1-C
Perdido 1.8 300 2-R
Caballito 3.0 50 ND
Buquito 8.2 1,100 ND
A 8 1,000 ND
B 4 250 ND
C 4 650 ND
∗Outcrop locations shown in Fig. 1.
†Diameter of outcrop where basement penetrates sediment at the sea floor, to nearest 0.1 km for swath-mapped
features and nearest 1 km for outcrops mapped by satellite (based on comparison of satellite- and swath-
mapped features).
‡Height of outcrop above sea floor calculated from seismic two-way travel time, to nearest 10m.
§Number of heat-flux profiles oriented radially around basement outcrops. Heat-flux data interpreted to indicate
recharging (R), discharging (D) or conductive (C) conditions. The latter does not mean that the outcrop is not
hydrogeologically active, only that existing data provide no evidence for advective heat extraction through an outcrop.
ND = no thermal data.

that our calculations are conservative, and suggests that basement
transmissive properties may be high across a large portion of this
mid-ocean ridge flank.

To assess the magnitude of regional advective heat extraction
from the cool part of the Cocos Plate, we exclude heat-flux
measurements collected above and immediately adjacent to buried
basement highs and outcrops (removing both anomalously high
and low values influenced by conductive thermal refraction and
the local influence of hydrothermal recharge and discharge),
retaining values over areas of flat sea floor and basement,
≥1–2 km from the nearest outcrop, where the sediment thickness
is typically 400–500 m. The mean of 75 filtered measurements
from the cool part of the Cocos Plate is 29 ± 13 mW m−2

(± one standard deviation) (Fig. 2a). When integrated across the
14,500 km2 of cool EPR-generated sea floor (ignoring the 260 km2

of exposed basement comprising outcrops, 1.8% of this area),
the regional power deficit is 800–1,400 MW (Fig. 2b). Heat-flux
profiles oriented radially adjacent to five of the ten mapped
basement outcrops in this area provide evidence for recharge
through two, discharge through one (the smallest surveyed), one
that both recharges and discharges and one that shows evidence for
neither recharge nor discharge (Fig. 1, Table 1). Five other outcrops
have not been sufficiently surveyed to assess their importance to
hydrothermal circulation.

Assuming that recharge and discharge are distributed through
all ten outcrops as suggested by our surveys, the mean advective
power output of discharging outcrops is 200–350 MW. This is
a conservative estimate; if more outcrops are recharging than
inferred, then the mean power output of discharging outcrops
is commensurately greater. This range of power output overlaps
estimates made from plume and point studies of high-temperature
vent fields on the southern cleft segment of the Juan de Fuca
ridge (JdFR) and 21◦N on the EPR (at the low end) and the
Endeavour Main Field on the JdFR and 9◦ 50′ N on the EPR (at the
high end)24. However, in contrast to these mid-ocean ridge–crest
systems, the advection of lithospheric heat from the cool part of the
Cocos Plate is conveyed by fluids that are only slightly warmer than
bottom seawater.

The heat-flux values from the cool side of the Cocos Plate, when
combined with seismic reflection and drilling data, indicate upper
basement (advective fluid) temperatures of just 5–40 ◦C, requiring
4–80 × 103 l s−1 of fluid entering and exiting seafloor outcrops to
account for the regional heat-flux deficit (Fig. 3). If this fluid flow
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Figure 2 Heat-flux and power deficit. a, Heat-flux values. Inset: The complete
dataset, separated into subsets located on ‘warm’ and ‘cool’ sides of the thermal
transition. Main plot: Filtered data from the cool side of the plate, and the range of
lithospheric predictions and global averages for sea floor of this age. The mean
value is 29±13mWm−2. b, Regional advective power based on the difference
between lithospheric and observed heat flux on the cool side of plate. The stippled
band shows the range of conductive heat-flux deficit based on lithospheric cooling
models; the dashed lines show calculations based on the standard deviation of the
observed heat flux.

is distributed evenly across the discharging outcrops, consistent
with interpretations from the heat-flux surveys, then each of these
features vents 1–20×103 l s−1 of cool hydrothermal fluid. This fluid
flow rate is three orders of magnitude greater than that seeping
from a well-studied basement outcrop on 3.5 Myr sea floor on the
eastern flank of the Juan de Fuca ridge10,15, where there is little or no
regional heat-flux deficit owing to current hydrothermal activity.

Heat and fluid fluxes are unlikely to be distributed evenly
across the surface of basement outcrops, but are probably
concentrated along faults and other highly permeable pathways,
as seen at other hydrothermal discharge sites10,25,26. The large
magnitude of fluxes documented in the present study, and their
likely focusing within small areas on a few outcrops, should
generate detectable thermal anomalies in deep water near the sea
floor27,28. The possibility of detectable chemical anomalies is less
certain because cold recharging sea water must transit rapidly
through the uppermost crust and has little opportunity to interact
chemically with the host rock, making it chemically very similar
to sea water29.

Earlier studies used analytical and numerical calculations
to assess the driving forces and crustal properties needed to
sustain flow between basement outcrops separated by tens of
kilometres on a young mid-ocean ridge flank9,11,12, indicating
basement permeability ranging from 10−11 m2 to 10−10 m2. In
contrast to the current analysis, there was little impact of
outcrop-to-outcrop fluid circulation on the regional seafloor
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Figure 3 Fluid temperature and flux. a, Histogram of temperatures at the
sediment–basement interface on the cool side of the plate, based on filtered
heat-flux data (Fig. 2a) and collocated seismic data. b, Fluid flux required to advect
the regional power deficit (Fig. 2b) based on the range of fluid (upper-basement)
temperatures. The solid line indicates the range of power deficits shown with a solid
line in Fig. 2b, whereas the dashed lines indicate ± one standard deviation of the
mean heat flux on the cool side of plate.

heat flux in these earlier studies. The much greater fluid and
heat flows documented in the present study, driven by even
smaller pressure differences (because the difference in fluid
temperature between recharge and discharge areas is smaller),
imply commensurately greater basement permeability. Extracting a
large fraction of lithospheric heat through widely spaced outcrops
while maintaining cool basement temperatures (5–40 ◦C) below
thick sediments probably requires regional basement permeabilities
of 10−10–10−9 m2 (ref. 11), a value consistent with earlier regional
estimates15 (see the Supplementary Note and Supplementary
Information, Fig. S1). This hypothesis can be tested, along with the
existence of thermal plumes in bottom water fed by massive, low-
temperature discharge, through carefully directed observational
and modelling studies.

Large fluxes of relatively unaltered seawater through the upper
oceanic crust bring oxygen, nitrate and other solutes to microbial
ecosystems that live in pore spaces within and adjacent to primary
fluid flow paths3,5,6. Our work shows that these fluxes of fluid, heat
and solutes can continue to crustal ages beyond the 10–20 Myr
commonly associated with the most vigorous biomass production6.
Focused discharge sites on outcrops can provide hydrogeological
windows into the sub-seafloor biosphere on mid-ocean ridge
flanks, without drilling or other invasive methods, much as
black-smoker vents enable access to the subsurface environment at
mid-ocean ridges30.
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